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We wish to learn a generative model of a molecule.

§Generative model of a molecule ! " #) [Gómez-Bombarelli+, 16]

–Input: Latent vector # ∈ ℝ' ∼ )(0, -')

–Output: Molecular graph " (graph w/ node labels)

Continuous optimization problem ⇔ Molecular optimization problem
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Background
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latent sp.

! " #)

Discrete
molecular graph sp.

Image from https://openi.nlm.nih.gov/detailedresult.php?img=PMC3403880_1758-2946-4-12-7&req=4
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Molecular graph generation is a non-trivial task

§Two technical challenges
1. No consensus on a generative model of a graph

• LSTM, GRU for path and tree

• Ring is non-trivial

2. Hard constraints such as valence conditions
• Degree of each node (=atom) is specified by its label

• e.g., carbon has degree 4, oxygen has degree 2.

3

Technical Challenge
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Most of the existing work employs a text representation of a molecule, 
called SMILES.

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES
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Existing work 1/3

Latent
continuous sp.

! / #)

Molecular graph sp.
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Statistical model has to learn a rule-based grammar

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES

–Cons:
• NN has to learn SMILES’ grammar

• No guarantee on valence conditions
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Existing work 1/3

CC(C)(O)C#Cc1ccc(C[NH2+][C@H]2CCCN(c3nc4ccccc4s3)C2)s1!
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SMILES’ grammar does not prescribe valence conditions

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES

–Cons:
• NN has to learn SMILES’ grammar

• No guarantee on valence conditions
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Existing work 1/3

c1c(C=O)(C)cccc1

This atom has a valence of 5.
That of carbon must be 4.

Grammatically 
correct

!
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JT-VAE achieves 100% validity for the first time, but requires multiple NNs.

§Generate a molecule by assembling subgraphs [Jin+, 18]
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Existing work 2/3

Enumerate all possible 
combinations, and predict 

the best using NN !

Image from [Jin+, 18]
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RL-based method discovers better molecules than VAE-based methods, 
but with enormous cost

§Molecular optimization using RL [You+, 18]

–Idea: Molecular generation as MDP
• State: Molecular graph

• Action: Modify the graph

• Reward: Target property

–Pros: Better optimization capability than VAE-based methods
–Cons: Requires a number of target property evaluations

• # of evals > 104 !

• Infeasible to work with the first principle calculation / wet-lab experiments
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Existing work 3/3
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No existing work satisfies all of the three properties
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Existing work

Approach VAE-based RL-based
Representation SMILES Graph Graph 

Validity ✔ ✔

Easy-to-
generate ✔

Sample 
complexity ✔ ✔
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Our contribution is to facilitate graph-based generation with help of 
“graph grammar”.
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Existing work

VAE-based RL-based
Representation SMILES Graph Graph 

Validity ✔ ✔

Easy-to-
generate ✔ ✔ ✔?

Sample 
complexity ✔ ✔
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We develop a graph grammar tailored for molecular generation

§ Idea
Use a context-free graph grammar for graph generation

–Graph generation boils down to tree generation

–Requirements:
• Always satisfy valence conditions

• Context-freeness

• Inference algorithm from data, not hand-written rules
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Our work
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A hyperedge replacement grammar can be constructed from data 
via tree decomposition
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Our work

Set of general 
hypergraphs

Hyperedge 
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

* HRG is a context-free grammar generating hypergraphs
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Each restriction is our contribution in the literature of graph grammar
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Each restriction is our contribution in the literature of graph grammar
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Hypergraph is a generalization of a graph

§Hypergraph ℋ = (6, 7) consists of…
–Node 8 ∈ 6

–Hyperedge 9 ∈ 7 ⊆ 2 < : Connect an arbitrary number of nodes
cf, An edge in a graph connects exactly two nodes
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Hypergraph & Molecular Hypergraph

HyperedgeNode
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We represent a molecule using a hypergraph, not a graph.
This helps to satisfy the valence conditions.

§Molecular hypergraph models…
– Atom = hyperedge

– bond = node

§Molecular graph models…
– Atom = node

– Bond = Edge
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Hypergraph & Molecular Hypergraph Our method
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These requirements guarantee transformation between graph & 
hypergraph

§Molecular hypergraph
1. Each node has degree 2 (=2-regular)

2. Label on a hyperedge determines # of nodes it has (= valence)
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Hypergraph & Molecular Hypergraph Our method
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Each restriction is our contribution in the literature of graph grammar
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HRG generates a hypergraph by repeatedly replacing 
non-terminal hyperedges with hypergraphs

§Hyperedge replacement grammar (HRG) = = (>, ?, /, @)

–>: set of non-terminals

–?: set of terminals
–/: starting symbol

–@: set of production rules
– A rule replaces a non-terminal hyperedge with a hypergraph
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Hyperedge replacement grammar & Molecular hypergraph grammar
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MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples: 
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Start from starting symbol S
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Hyperedge replacement grammar & Molecular hypergraph grammar
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The left rule is applicable
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Hyperedge replacement grammar & Molecular hypergraph grammar
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We obtain a hypergraph with three non-terminals
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Apply the right rule to one of the non-terminals
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Two non-terminals remain

25

Hyperedge replacement grammar & Molecular hypergraph grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Graph generation halts when there is no non-terminal, 
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Hyperedge replacement grammar & Molecular hypergraph grammar
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MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples: 
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Hyperedge replacement grammar & Molecular hypergraph grammar
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MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples: 
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Hyperedge replacement grammar & Molecular hypergraph grammar
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Each restriction is our contribution in the literature of graph grammar
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Our work
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Tree decomposition discovers a tree-like structure in a graph

§Tree decomposition
–All of the nodes and edges must be included in the tree

–For each node, the tree nodes that contain it must be connected
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Tree decomposition & Irredundant tree decomposition
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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Tree decomposition & Irredundant tree decomposition
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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Tree decomposition & Irredundant tree decomposition
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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Tree decomposition & Irredundant tree decomposition
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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Tree decomposition & Irredundant tree decomposition
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Extract production rules from a tree decomposition;
then HRG with the rules can reconstruct the original hypergraph

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• No guarantee on 2-regularity&

38

Tree decomposition & Irredundant tree decomposition

1. Compute tree decompositions of input hypergraphs
2. Extract production rules
3. Compose HRG by taking their union
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Extract production rules from a tree decomposition;
then HRG with the rules can reconstruct the original hypergraph

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• No guarantee on 2-regularity&
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Tree decomposition & Irredundant tree decomposition
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Irredundant tree decomposition is a key to guarantee 2-regularity

§ Irredundant tree decomposition
–The connected subgraph induced by a node must be a path

–Any tree decomposition can be made irredundant in poly-time
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Tree decomposition & Irredundant tree decomposition
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Each restriction is our contribution in the literature of graph grammar
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Our work
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Molecular hypergraph is used to satisfy the valence conditions, and
irreduntant tree decomposition guarantees 2-regularity.

§MHG Inference algorithm
–Input: Set of molecular graphs

–Output: MHG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• Guarantee 2-regularity #
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Our method in 1-page

1. Convert molecular graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
5. Compose MHG by taking their union

Our method

Thanks to HRG

Our contribution
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Application to Molecular Optimization

43
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We obtain (Enc, Dec) between molecule and latent vector 
by combining MHG and RNN-VAE

§MHG-VAE: (Enc, Dec) between molecule & latent vector
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Application to Molecular Optimization
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First, we learn (Enc, Dec) between a molecule and its vector 
representation using MHG-VAE

§Global molecular optimization
–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations #A ∈ ℝ' ABC
D

1. Some of which have target values {FA ∈ ℝ}

4. BO gives us candidates #H ∈ ℝ' HBC
I that may maximize the target

5. Decode them to obtain molecules "H HBC
I

45

Application to Molecular Optimization

Image from [Gómez-Bombarelli+, 16]
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Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

§Global molecular optimization
–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations #A ∈ ℝ' ABC
D

1. Some of which have target values {FA ∈ ℝ}

4. BO gives us candidates #H ∈ ℝ' HBC
I that may maximize the target

5. Decode them to obtain molecules "H HBC
I
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Application to Molecular Optimization

Image from [Gómez-Bombarelli+, 16]
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We wish to understand the dependency of the performance on
# of evaluations of function, J:Molecule ⟼ Property

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to JT-VAE?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

47

Empirical studies

Synthetic accessibility score

Penalty to a ring larger than six

Water solubility
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MHG achieves higher performance than the other VAE-based methods '

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

48

Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)
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But RL-based method is better than ours when # of evaluations is not 
limited(

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL
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Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)
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Ours is better than the RL-based method 
when # of evaluations is limited to 500 '

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

50

Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)
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We develop a graph-grammar based molecular representation, MHG,
as well as its combination with VAE.

§We develop a molecular hypergraph grammar (MHG)
–Molecules generated by MHG always satisfy the valence conditions

• Hypergraph representation

• Irredundant tree decomposition

–Inference algorithm from data
• No need to write rules by hand

• The inferred MHG can describe all of the input data

§We apply MHG to molecular optimization
–MHG-VAE > JT-VAE
–MHG-VAE > GCPN when # of evals is limited

51

Conclusion
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