
© 2019 IBM Corporation

Molecular Hypergraph Grammar
with Its Application to Molecular Optimization

Hiroshi Kajino

MIT-IBM Watson AI Lab
IBM Research - Tokyo

© 2019 IBM Corporation

We wish to learn a generative model of a molecule.

§Generative model of a molecule ! " #) [Gómez-Bombarelli+, 16]

–Input: Latent vector # ∈ ℝ' ∼)(0, -')

–Output: Molecular graph " (graph w/ node labels)

Continuous optimization problem ⇔ Molecular optimization problem

2

Background

Continunous
latent sp.

! " #)

Discrete
molecular graph sp.

Image from https://openi.nlm.nih.gov/detailedresult.php?img=PMC3403880_1758-2946-4-12-7&req=4

© 2019 IBM Corporation

Molecular graph generation is a non-trivial task

§Two technical challenges
1. No consensus on a generative model of a graph

• LSTM, GRU for path and tree

• Ring is non-trivial

2. Hard constraints such as valence conditions
• Degree of each node (=atom) is specified by its label

• e.g., carbon has degree 4, oxygen has degree 2.

3

Technical Challenge

© 2019 IBM Corporation

Most of the existing work employs a text representation of a molecule,
called SMILES.

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES

4

Existing work 1/3

Latent
continuous sp.

! / #)

Molecular graph sp.
SMILES sp.

c1c(C=O)cccc1 " = 1(/)

SMILES’
grammar

Seq. model

© 2019 IBM Corporation

Statistical model has to learn a rule-based grammar

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES

–Cons:
• NN has to learn SMILES’ grammar

• No guarantee on valence conditions

5

Existing work 1/3

CC(C)(O)C#Cc1ccc(C[NH2+][C@H]2CCCN(c3nc4ccccc4s3)C2)s1!

© 2019 IBM Corporation

SMILES’ grammar does not prescribe valence conditions

§Use text representation ”SMILES” [Gómez-Bombarelli+, 16]

–Pros: a standard sequential model can generate SMILES

–Cons:
• NN has to learn SMILES’ grammar

• No guarantee on valence conditions

6

Existing work 1/3

c1c(C=O)(C)cccc1

This atom has a valence of 5.
That of carbon must be 4.

Grammatically
correct

!

© 2019 IBM Corporation

JT-VAE achieves 100% validity for the first time, but requires multiple NNs.

§Generate a molecule by assembling subgraphs [Jin+, 18]

7

Existing work 2/3

Enumerate all possible
combinations, and predict

the best using NN !

Image from [Jin+, 18]

© 2019 IBM Corporation

RL-based method discovers better molecules than VAE-based methods,
but with enormous cost

§Molecular optimization using RL [You+, 18]

–Idea: Molecular generation as MDP
• State: Molecular graph

• Action: Modify the graph

• Reward: Target property

–Pros: Better optimization capability than VAE-based methods
–Cons: Requires a number of target property evaluations

• # of evals > 104 !

• Infeasible to work with the first principle calculation / wet-lab experiments

8

Existing work 3/3

current
state

next stateaction
“add O”

© 2019 IBM Corporation

No existing work satisfies all of the three properties

9

Existing work

Approach VAE-based RL-based
Representation SMILES Graph Graph

Validity ✔ ✔

Easy-to-
generate ✔

Sample
complexity ✔ ✔

© 2019 IBM Corporation

Our contribution is to facilitate graph-based generation with help of
“graph grammar”.

10

Existing work

VAE-based RL-based
Representation SMILES Graph Graph

Validity ✔ ✔

Easy-to-
generate ✔ ✔ ✔?

Sample
complexity ✔ ✔

© 2019 IBM Corporation

We develop a graph grammar tailored for molecular generation

§ Idea
Use a context-free graph grammar for graph generation

–Graph generation boils down to tree generation

–Requirements:
• Always satisfy valence conditions

• Context-freeness

• Inference algorithm from data, not hand-written rules

11

Our work

Enc
G

Enc
N

Enc
H

Molecular
graph

Molecular
hypergraph

Parse Tree
according to MHG

! ∈ ℝ$

Latent vector

Enc
G

Enc
N

Enc
H

Molecular
graph

Molecular
hypergraph

Parse Tree
according to MHG

! ∈ ℝ$

Latent vector

=
Easy to generate#

Hyperedge
replacement

grammar

Our main contribution

© 2019 IBM Corporation

A hyperedge replacement grammar can be constructed from data
via tree decomposition

12

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

* HRG is a context-free grammar generating hypergraphs

© 2019 IBM Corporation

Each restriction is our contribution in the literature of graph grammar

13

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

Set of molecular
hypergraphs

Molecular Hypergraph
Grammar

Irredundant
tree decomposition

Our method

Restrict

Restrict

Restrict

* HRG is a context-free grammar generating hypergraphs

© 2019 IBM Corporation

Each restriction is our contribution in the literature of graph grammar

14

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

Set of molecular
hypergraphs

Molecular Hypergraph
Grammar

Irredundant
tree decomposition

Our method

Restrict

Restrict

Restrict

* HRG is a context-free grammar generating hypergraphs

© 2019 IBM Corporation

Hypergraph is a generalization of a graph

§Hypergraph ℋ = (6, 7) consists of…
–Node 8 ∈ 6

–Hyperedge 9 ∈ 7 ⊆ 2 < : Connect an arbitrary number of nodes
cf, An edge in a graph connects exactly two nodes

15

Hypergraph & Molecular Hypergraph

HyperedgeNode

© 2019 IBM Corporation

We represent a molecule using a hypergraph, not a graph.
This helps to satisfy the valence conditions.

§Molecular hypergraph models…
– Atom = hyperedge

– bond = node

§Molecular graph models…
– Atom = node

– Bond = Edge

16

Hypergraph & Molecular Hypergraph Our method

H HC

H

H

C

H

H

H HC

H

C

H

H HC

H

C

H

C C

H

H

HH

H

H

C C H

HH

H

C C

H

HH

H

© 2019 IBM Corporation

These requirements guarantee transformation between graph &
hypergraph

§Molecular hypergraph
1. Each node has degree 2 (=2-regular)

2. Label on a hyperedge determines # of nodes it has (= valence)

17

Hypergraph & Molecular Hypergraph Our method

H HC

H

H

C

H

H

H HC

H

C

H

H HC

H

C

H

C C

H

H

HH

H

H

C C H

HH

H

C C

H

HH

H

↔

© 2019 IBM Corporation

Each restriction is our contribution in the literature of graph grammar

18

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

Set of molecular
hypergraphs

Molecular Hypergraph
Grammar

Irredundant
tree decomposition

Our method

Restrict

Restrict

Restrict

* HRG is a context-free grammar generating hypergraphs

© 2019 IBM Corporation

HRG generates a hypergraph by repeatedly replacing
non-terminal hyperedges with hypergraphs

§Hyperedge replacement grammar (HRG) = = (>, ?, /, @)

–>: set of non-terminals

–?: set of terminals
–/: starting symbol

–@: set of production rules
– A rule replaces a non-terminal hyperedge with a hypergraph

19

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Labels on hyperedges

Replace l.h.s. with r.h.s.

C
N

S

© 2019 IBM Corporation

MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples:

20

Hyperedge replacement grammar & Molecular hypergraph grammar

MHG

HRG

C C

H

H

HH

H

HH

C C

H

H

HH

H

HH

Valence $

2-regularity $

Our method

© 2019 IBM Corporation

Start from starting symbol S

21

Hyperedge replacement grammar & Molecular hypergraph grammar

S

1C

2

H

H1N

2

N

N

NS

Production rules @

© 2019 IBM Corporation

The left rule is applicable

22

Hyperedge replacement grammar & Molecular hypergraph grammar

S

1C

2

H

H1N

2

N

N

NS

Production rules @

© 2019 IBM Corporation

We obtain a hypergraph with three non-terminals

23

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

N

N

N

© 2019 IBM Corporation

Apply the right rule to one of the non-terminals

24

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

N

N

N

© 2019 IBM Corporation

Two non-terminals remain

25

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

C

N

N

H

H

© 2019 IBM Corporation

Repeat the procedure until there is no non-terminal

26

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

C

N

N

H

H

© 2019 IBM Corporation

Repeat the procedure until there is no non-terminal

27

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

C

C

N

H

H

H

H

© 2019 IBM Corporation

Repeat the procedure until there is no non-terminal

28

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

C

C

N

H

H

H

H

© 2019 IBM Corporation

Graph generation halts when there is no non-terminal,

29

Hyperedge replacement grammar & Molecular hypergraph grammar

1C

2

H

H1N

2

N

N

NS

Production rules @

C

C

C

H

H

H

H

H

H

© 2019 IBM Corporation

MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples:

30

Hyperedge replacement grammar & Molecular hypergraph grammar

MHG

HRG

C C

H

H

HH

H

HH

C C

H

H

HH

H

HH

Valence $

2-regularity $

Our method

This can be
avoided by
learning HRG from
data [Aguiñaga+, 16]

© 2019 IBM Corporation

MHG is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples:

31

Hyperedge replacement grammar & Molecular hypergraph grammar

MHG

HRG

C C

H

H

HH

H

HH

C C

H

H

HH

H

HH

Valence $

2-regularity $

Our method

This can be
avoided by
learning HRG from
data [Aguiñaga+, 16]

Use an irredundant
tree decomposition
(our contribution)

© 2019 IBM Corporation

Each restriction is our contribution in the literature of graph grammar

32

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

Set of molecular
hypergraphs

Molecular Hypergraph
Grammar

Irredundant
tree decomposition

Our method

Restrict

Restrict

Restrict

* HRG is a context-free grammar generating hypergraphs

© 2019 IBM Corporation

Tree decomposition discovers a tree-like structure in a graph

§Tree decomposition
–All of the nodes and edges must be included in the tree

–For each node, the tree nodes that contain it must be connected

33

Tree decomposition & Irredundant tree decomposition

* Digits represent the node correspondence

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

C C H

HH

H

C C

H

HH

H

© 2019 IBM Corporation

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

34

Tree decomposition & Irredundant tree decomposition

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

C C H

HH

H

C C

H

HH

H

© 2019 IBM Corporation

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

35

Tree decomposition & Irredundant tree decomposition

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

C C H

HH

H

C C

H

HH

H

© 2019 IBM Corporation

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

36

Tree decomposition & Irredundant tree decomposition

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

1C
4

H

H 1

4 N

1

3

4
1

4 N

Production rule
=

attach

© 2019 IBM Corporation

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

37

Tree decomposition & Irredundant tree decomposition

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

1C
4

H

H 1

4 N

1

3

4
1

4 N

Production rule
=

attach

We want to attach next!
N

N

© 2019 IBM Corporation

Extract production rules from a tree decomposition;
then HRG with the rules can reconstruct the original hypergraph

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• No guarantee on 2-regularity&

38

Tree decomposition & Irredundant tree decomposition

1. Compute tree decompositions of input hypergraphs
2. Extract production rules
3. Compose HRG by taking their union

© 2019 IBM Corporation

Extract production rules from a tree decomposition;
then HRG with the rules can reconstruct the original hypergraph

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• No guarantee on 2-regularity&

39

Tree decomposition & Irredundant tree decomposition

C C

H

H

HH

H

HH

This cannot be transformed
into a molecular graph

© 2019 IBM Corporation

Irredundant tree decomposition is a key to guarantee 2-regularity

§ Irredundant tree decomposition
–The connected subgraph induced by a node must be a path

–Any tree decomposition can be made irredundant in poly-time

40

Tree decomposition & Irredundant tree decomposition

1

3

2

1

3

4

3C

4

H

H

3 C

2

H

H

1C

4

H

H 1 C

2

H

H

4

RedundantIrredundant

Our method

© 2019 IBM Corporation

Each restriction is our contribution in the literature of graph grammar

41

Our work

Set of general
hypergraphs

Hyperedge
Replacement Grammar

Tree decomposition

Existing work on graph grammar
[Aguiñaga+, 16]

Set of molecular
hypergraphs

Molecular Hypergraph
Grammar

Irredundant
tree decomposition

Restrict

Restrict

Restrict

* HRG is a context-free grammar generating hypergraphs

Our method

© 2019 IBM Corporation

Molecular hypergraph is used to satisfy the valence conditions, and
irreduntant tree decomposition guarantees 2-regularity.

§MHG Inference algorithm
–Input: Set of molecular graphs

–Output: MHG w/ the following properties:
• All of the input hypergraphs are in the language %

• Guarantee the valence conditions %

• Guarantee 2-regularity #

42

Our method in 1-page

1. Convert molecular graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
5. Compose MHG by taking their union

Our method

Thanks to HRG

Our contribution

© 2019 IBM Corporation

Application to Molecular Optimization

43

© 2019 IBM Corporation

We obtain (Enc, Dec) between molecule and latent vector
by combining MHG and RNN-VAE

§MHG-VAE: (Enc, Dec) between molecule & latent vector

44

Application to Molecular Optimization

Enc
G

Enc
N

Enc
H

Molecular
graph

Molecular
hypergraph

Parse Tree
according to MHG

! ∈ ℝ$

Latent vector

MHG-VAE encoder

MHG Enc of RNN-VAE

© 2019 IBM Corporation

First, we learn (Enc, Dec) between a molecule and its vector
representation using MHG-VAE

§Global molecular optimization
–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations #A ∈ ℝ' ABC
D

1. Some of which have target values {FA ∈ ℝ}

4. BO gives us candidates #H ∈ ℝ' HBC
I that may maximize the target

5. Decode them to obtain molecules "H HBC
I

45

Application to Molecular Optimization

Image from [Gómez-Bombarelli+, 16]

© 2019 IBM Corporation

Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

§Global molecular optimization
–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations #A ∈ ℝ' ABC
D

1. Some of which have target values {FA ∈ ℝ}

4. BO gives us candidates #H ∈ ℝ' HBC
I that may maximize the target

5. Decode them to obtain molecules "H HBC
I

46

Application to Molecular Optimization

Image from [Gómez-Bombarelli+, 16]

© 2019 IBM Corporation

We wish to understand the dependency of the performance on
of evaluations of function, J:Molecule ⟼ Property

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to JT-VAE?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

47

Empirical studies

Synthetic accessibility score

Penalty to a ring larger than six

Water solubility

© 2019 IBM Corporation

MHG achieves higher performance than the other VAE-based methods '

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

48

Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)

© 2019 IBM Corporation

But RL-based method is better than ours when # of evaluations is not
limited(

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

49

Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)

© 2019 IBM Corporation

Ours is better than the RL-based method
when # of evaluations is limited to 500 '

§Purpose of our empirical studies
Validate the following questions:

1. MHG improves the performance compared to VAE-based ones?
2. If # of evaluations is not limited, RL will be better than VAE

3. If # of evaluations is limited, VAE will be better than RL

50

Empirical studies

JT-VAE by Jin et al., ICML ’18 (VAE+BO)
GCPN by You et al., NeurIPS ‘18 (RL)

© 2019 IBM Corporation

We develop a graph-grammar based molecular representation, MHG,
as well as its combination with VAE.

§We develop a molecular hypergraph grammar (MHG)
–Molecules generated by MHG always satisfy the valence conditions

• Hypergraph representation

• Irredundant tree decomposition

–Inference algorithm from data
• No need to write rules by hand

• The inferred MHG can describe all of the input data

§We apply MHG to molecular optimization
–MHG-VAE > JT-VAE
–MHG-VAE > GCPN when # of evals is limited

51

Conclusion

© 2019 IBM Corporation

[Gómez-Bombarelli+, 16] Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,

Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-

Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS

Central Science, 2018. (ArXiv ver. appears in 2016)

[Jin+, 18] Jin, W., Barzilay, R., and Jaakkola, T. Junction tree variational autoencoder for molecular graph

generation. In Proceedings of the Thirty-fifth International Conference on Machine Learning, 2018.

[You+, 18] You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph convolutional policy network for

goal-directed molecular graph generation. In Advances in Neural Information Processing Systems 31, pp.

6412–6422, 2018.

[Aguiñaga+, 16] Aguiñaga, S., Palacios, R., Chiang, D., and Weninger, T. Growing graphs from hyperedge

replacement graph grammars. In Proceedings of the 25th ACM International on Conference on Information

and Knowledge Management, pp. 469–478, 2016.

52

Reference

