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General Formulation of GANs

Adversarial distribution matching

m A generator G(z),z ~ p(z), a critic D(x)
m A variational objective V (4, pg; D)

e computed using samples of data 1, and model p;
o d(ua,pc) = maxp V(ug, pc; D) defines a discrepancy metric

m Solve the minimax game

min max V(ua, pc; D)
® No explicit specification of likelihoods
® Brittle training, mode collapsing
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A Concrete Example (That Is of Particular Interest)

RKL GAN

m Let VekL(p, 3 D) = Exp[D(X)] + Exr.p[log(-D(X"))]
m KL(p || 1) = Ex-p[log %1 < maxp{ Ve (1, p; D)}
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Regularizing GANs with Likelihoods

p* = argmin{max{ Ve (p, ;D) } = ARu(p)}
p

With data likelihoods R, (p) = —E,[log ] [Li, 2018]

m Promoting plausible samples (concentrate)

With model likelihoods R, (p) = E,[log p] [Warde-Farley, 2017]

m Encouraging sample diversity (disperse)
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Regularizing GANs with Likelihoods: Gradient View

p* = argmin{max{ Ve (p, ;D) } = ARu(p)}
p

Likelihood Regularization Entropy Regularization
= Target = Target
=== Model === Model

We aim to provide theoretical groundings for such practices!
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Preliminary

Gibbs distribution

m pp(x) o< exp(—f1(x)) is called a Gibbs distribution
@ 1 (x) is the potential function
e [ is the inverse temperature

m Annealing approaches the target distribution by gradually
tuning g to avoid numerical difficulties

B<1 e — =

Figure: lllustration of annealed Gibbs distribution in 1-D. 5 =1 (green) is
the target distribution, 8 < 1, mode covering and 5 > 1, mode seeking.
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§A Langevin View

The Link

1908
Ito-Langevin Diffusion

dX, = —Vp(X)dt + /26 1dW,

1914
Fokker-Plank Equation

9:p = V- (pVih) + B~ Ap

2014
Generative Adversarial Net

min {max{Exp,[DCO] = By, [In(~D(X))]} + 21npa ()}

1
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The Link

1908
Ito-Langevin Diffusion

dX, = —Vp(X)dt + /26 1dW,

1914
Fokker-Plank Equation

9:p = V- (pVih) + B~ Ap

They All Minimize The Free Energy: F,(p; B) £ BE,[y] + E,[In p]

2014
Generative Adversarial Net

min {max{Exp,[DCO] = By, [In(~D(X))]} + 21npa ()}

1
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The Link

1908
Ito-Langevin Diffusion

dX, = —Vp(X)dt + /26 1dW,

1914
Fokker-Plank Equation

9:p = V- (pVih) + B~ Ap

The Solution is Given by The Gibbs Distribution f, g(x) o< e F¥®)

2014
Generative Adversarial Net

min {max{Exp,[DCO] = By, [In(~D(X))]} + 21npa ()}

1
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Effect of Likelihood Regularization & Its Implications

Equivalence of Likelihood & Entropy Regularization

p* = argmin{max{ Ve (p, ;D) } = ARu(p)}
p

m For likelihood regularization

Ru(p) = -Epllog u] = py (x) o< exp(-(A +1)3(x))
m For entropy regularization

Ru(p) = Ep[log p] = pZ(x) o< exp(-(A+1) "9 (x))

Implications

m Likelihood/Entropy regularization bias the target distribution!
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Replacing The Likelihood with Score Function Estimate

Challenges and solutions

m We don’t have the likelihood for data. That said, we know
m log 1(Gp(z)) < Ru(2) = Go(z)" StopGrad{S,(Gy(z))}

e S, (x) = V.logpu(x) is the (data) score function
m Estimating score function is way easier than likelihood

Likelihood s Score Function

Data Histogram
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Experiments: Dynamic Annealing

— —a— Pos. Mono. Annealing
A = Monotonic (+)

70 —=— Neg. Mono. Annealing
+ == Monotonic (-) 60 ~m— Oscillatory Annealing
e Oscillatory 50 —m- No Annealing
40 "\--_.._.,—h.._-_./‘u.
0
FID
_ 30
10k 30k 50k _ 70k 90k 110k 130k 150k e o sok oo wook ok Saok Ssoe
Training lterations Training Iterations
Figure 4. Different dynamic regularization schemes. Figure 5. Learning dynamics with dynamic annealing.
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Figure 6. Learning from an unnormalized density to sample the kidney distribution. Top left: target distribution; bottom left: model
distribution initialization; ‘w/> with variational annealing; ‘w/o’ without annealing.
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Experiments: Quantitative & Qualitative Results

Table 1. Quantative results for variational annealing on Cifar10.

Static Annealing Dynamic Annealing
A -50 —-10 -1 -0 -0.01 O 0.01 01 1 10 50 PMA NMA OA

Inception score (higher is considered better)
RKL-GAN 6.24 637 635 633 635 625 624 635 641 619 6.17 656 7.08 7.05
JSD-GAN 6.68 6.84 6.64 635 661 629 667 630 693 648 622 6.80 6.99 696
W-GAN 577 6.14 629 686 6.62 593 622 654 595 600 600 695 692 691
FID score (lower is considered better)
RKL-GAN 384 345 36.7 365 370 365 372 36.1 388 36.0 373 344 292 289
JSD-GAN 349 309 35.19 36.6 33.0 374 335 349 30.7 32.75 347 309 310 29.1
W-GAN 44.1 40.6 38.6 314 304 428 3943 336 414 41.6 402 293 29.8 29.0

Figure 3. Cifar10 and CelebA generation results with negative static annealing.
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Thank you.

Welcome to our poster #10 @ Pacific Ballroom tonight.
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