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Explicit Wasserstein Minimization

I Goal: To train a generator network g minimizing the
Wasserstein distance W (g#µ, ν) between the generated
distribution g#µ and the target distribution ν, where µ is a
simple distribution such as uniform or Gaussian.

– Indirectly pursued by WGAN (Arjovsky et al., 2017)

I Motivation: If the optimal transport plan between g#µ and
ν can be computed, why not use it to explicitly minimize
W (g#µ, ν) without any adversarial procedure?



Key Observations

In the “semi-discrete setting”, where g#µ is continuous and ν is
discrete (denoted as ν̂),

1. W (g#µ, ν̂) is realized by a deterministic optimal transport
mapping T between g#µ and ν̂, and

2. fitting the generated data g#µ towards the corresponding
target points T#g#µ may lead to a new generator g ′ with
lower Wasserstein distance W (g ′#µ, ν̂).

An algorithm iterating these two steps (called as “OTS” and
“FIT”) would explicitly minimize W (g#µ, ν̂).



A Synthetic Example
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The Algorithm

I OTS: Compute the semi-discrete optimal transport between
g#µ and ν̂ by minimizing (Genevay et al., 2016)

−
∫
X

min
i

(c(x , yi ) − ψ̂i )dg#µ(x) − 1

N

N∑
i=1

ψ̂i .

and the Monge OT plan is given by T (x) := yargmini c(x ,yi )−ψ̂i
.

I FIT: Find a new generator g ′ by minimizing∫
z
c(g ′(z),T (g(z)))dµ(z).

I Overall algorithm: Iterate OTS and FIT.



Experimental Results

I MNIST: Better visual quality, better WD/IS/FID (even with
small MLP architectures!)

I CelebA/CIFAR: Worse visual quality, but still lower WD

I Lower Wasserstein distance does not always lead to better
visual quality: importance of regularizing discriminator in
GANs (Huang et al., 2017; Bai et al., 2019).
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