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How to handle missing data with deep generative models?

Let (xi, zi)i≤n be i.i.d. random variables driven by a deep generative
model: {

z ∼ p(z) (prior)
x ∼ pθ(x | z) (observation model)

z

x

θ

n

Assume that some of the training data are missing-at-random (MAR).
We can then split each sample i ∈ {1, . . . , n} into

• the observed features xo
i and

• the missing features xm
i .

1. Can we train pθ in a VAE fashion in spite of the missingness?

2. Can we impute the missing values?
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1. Can we train pθ in a VAE fashion in spite of the missingness?

Under the MAR assumption, the relevant quantity to maximise is the likelihood of the
observed data equal to

`o(θ) =

n∑
i=1

log pθ(xo
i ) =

n∑
i=1

log

∫
pθ(xo

i | z)p(z)dz.

Building on the importance weighted autoencoder (IWAE) of Burda et al. (2016), we
derive an approachable stochastic lower bound of `o(θ), the missing IWAE (MIWAE)
bound:

LK(θ, γ) =

n∑
i=1

Ezi1,...,ziK∼qγ(z|xo
i )

[
log

1
K

K∑
k=1

pθ(xo
i |zik)p(zik)

qγ(zik|xo
i )

]
≤ `o(θ).

Like for the IWAE, the MIWAE bound gets tighter when the number of importance weights
K grows.
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2. Can we impute the missing values?

For the single imputation problem we use self-normalised importance sampling to
approximate E[xm|xo]:

E[xm|xo] ≈
L∑

l=1

wl xm
(l),

where (xm
(1), z(1)), . . . , (xm

(L), z(L)) are i.i.d. samples from pθ(xm|xo, z)qγ(z|xo) and

wl =
rl

r1 + . . .+ rL
, with rl =

pθ(xo|z(l))p(z(l))

qγ(z(l)|xo)
.

Multiple imputation, i.e. sampling from pθ(xm|xo), can be done using sampling
importance resampling according to the weights wl for large L.
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Single imputation of UCI data sets (50% MCAR)

Banknote Breast Concrete Red White Yeast
MIWAE 0.446 (0.038) 0.280 (0.021) 0.501 (0.040) 0.643 (0.026) 0.735 (0.033) 0.964(0.057)
MVAE 0.593 (0.059) 0.318 (0.018) 0.587(0.026) 0.686 (0.120) 0.782 (0.018) 0.997 (0.064)
missForest 0.676 (0.040) 0.291 (0.026) 0.510 (0.11) 0.697 (0.050) 0.798 (0.019) 1.41 (0.02)
PCA 0.682 (0.016) 0.729 (0.068) 0.938 (0.033) 0.890 (0.033) 0.865 (0.024) 1.05(0.061)
kNN 0.744 (0.033) 0.831 (0.029) 0.962(0.034) 0.981 (0.037) 0.929 (0.025) 1.17 (0.048)
Mean 1.02 (0.032) 1.00 (0.04) 1.01 (0.035) 1.00 (0.03) 1.00 (0.02) 1.06 (0.052)

Mean-squared error for single imputation for various continuous UCI data sets.
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Imputation incomplete versions of binary MNIST

Single imputations:

Multiple imputations :
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Classification of binary MNIST (50% MCAR pixels)

Test accuracy Test cross-entropy
Zero imputation 0.9739 (0.0018) 0.1003 (0.0092)
missForest imputation 0.9805 (0.0018) 0.0645 (0.0066)
MIWAE single imputation 0.9847 (0.0009) 0.0510 (0.0035)
MIWAE multiple imputation 0.9870 (0.0003) 0.0396 (0.0003)
Complete data 0.9866 (0.0007) 0.0464 (0.0026)

Learn more about MIWAE at poster 9 in the
Pacific ballroom at 6.30!

Thanks for your attention :)


