MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets

Pierre-Alexandre Mattei

IT University of Copenhagen

http://pamattei.github.io/

@pamattei

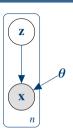
ICML 2019

Joint work with Jes Frellsen (ITU Copenhagen)

IT UNIVERSITY OF CPH

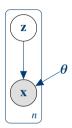
Let $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ be i.i.d. random variables driven by a deep generative model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\theta}(\mathbf{x} \mid \mathbf{z}) & \text{(observation model)} \end{cases}$$



Let $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ be i.i.d. random variables driven by a deep generative model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) & \text{(observation model)} \end{cases}$$

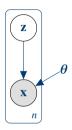


Assume that some of the training data are **missing-at-random** (MAR). We can then split each sample $i \in \{1, ..., n\}$ into

- the observed features x_i^0 and
- the missing features x_i^m .

Let $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ be i.i.d. random variables driven by a deep generative model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) & \text{(observation model)} \end{cases}$$

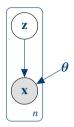


Assume that some of the training data are **missing-at-random** (MAR). We can then split each sample $i \in \{1, ..., n\}$ into

- the observed features x_i^0 and
- the missing features $\mathbf{x}_i^{\mathbf{m}}$.
- 1. Can we train p_{θ} in a VAE fashion in spite of the missingness?

Let $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ be i.i.d. random variables driven by a deep generative model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) & \text{(observation model)} \end{cases}$$



Assume that some of the training data are **missing-at-random** (MAR). We can then split each sample $i \in \{1, \dots, n\}$ into

- the observed features x_i^0 and
- the missing features x_i^m .
- 1. Can we train p_{θ} in a VAE fashion in spite of the missingness?
- 2. Can we impute the missing values?

1. Can we train p_{θ} in a VAE fashion in spite of the missingness?

Under the MAR assumption, the relevant quantity to maximise is the **likelihood of the observed data** equal to

$$\ell^{\circ}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{i}^{\circ}) = \sum_{i=1}^{n} \log \int p_{\boldsymbol{\theta}}(\mathbf{x}_{i}^{\circ} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}.$$

1. Can we train p_{θ} in a VAE fashion in spite of the missingness?

Under the MAR assumption, the relevant quantity to maximise is the **likelihood of the observed data** equal to

$$\ell^{o}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{i}^{o}) = \sum_{i=1}^{n} \log \int p_{\boldsymbol{\theta}}(\mathbf{x}_{i}^{o} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}.$$

Building on the **importance weighted autoencoder (IWAE)** of Burda et al. (2016), we derive an approachable stochastic lower bound of $\ell^{o}(\theta)$, the **missing IWAE (MIWAE)** bound:

$$\mathcal{L}_K(\boldsymbol{\theta}, \boldsymbol{\gamma}) = \sum_{i=1}^n \mathbb{E}_{\mathbf{z}_{i1}, \dots, \mathbf{z}_{iK} \sim q_{\boldsymbol{\gamma}}(\mathbf{z} | \mathbf{x}_i^{\text{o}})} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_i^{\text{o}} | \mathbf{z}_{ik}) p(\mathbf{z}_{ik})}{q_{\boldsymbol{\gamma}}(\mathbf{z}_{ik} | \mathbf{x}_i^{\text{o}})} \right] \leq \ell^{\text{o}}(\boldsymbol{\theta}).$$

Like for the IWAE, the MIWAE bound gets tighter when the number of importance weights K grows.

2. Can we impute the missing values?

For the single imputation problem we use self-normalised importance sampling to approximate $\mathbb{E}[\mathbf{x}^m|\mathbf{x}^o]$:

$$\mathbb{E}[\mathbf{x}^{\mathrm{m}}|\mathbf{x}^{\mathrm{o}}] \approx \sum_{l=1}^{L} w_{l} \, \mathbf{x}_{(l)}^{\mathrm{m}},$$

where $(\mathbf{x}_{(1)}^{\mathrm{m}},\mathbf{z}_{(1)}),\ldots,(\mathbf{x}_{(L)}^{\mathrm{m}},\mathbf{z}_{(L)})$ are i.i.d. samples from $p_{\theta}(\mathbf{x}^{\mathrm{m}}|\mathbf{x}^{\mathrm{o}},\mathbf{z})q_{\gamma}(\mathbf{z}|\mathbf{x}^{\mathrm{o}})$ and

$$w_l = \frac{r_l}{r_1 + \ldots + r_L}, \text{ with } r_l = \frac{p_{\boldsymbol{\theta}}(\mathbf{x}^{\text{o}}|\mathbf{z}_{(l)})p(\mathbf{z}_{(l)})}{q_{\boldsymbol{\gamma}}(\mathbf{z}_{(l)}|\mathbf{x}^{\text{o}})}.$$

2. Can we impute the missing values?

For the single imputation problem we use self-normalised importance sampling to approximate $\mathbb{E}[\mathbf{x}^m|\mathbf{x}^o]$:

$$\mathbb{E}[\mathbf{x}^{\mathrm{m}}|\mathbf{x}^{\mathrm{o}}] \approx \sum_{l=1}^{L} w_{l} \, \mathbf{x}_{(l)}^{\mathrm{m}},$$

where $(\mathbf{x}_{(1)}^{\mathrm{m}},\mathbf{z}_{(1)}),\ldots,(\mathbf{x}_{(L)}^{\mathrm{m}},\mathbf{z}_{(L)})$ are i.i.d. samples from $p_{\theta}(\mathbf{x}^{\mathrm{m}}|\mathbf{x}^{\mathrm{o}},\mathbf{z})q_{\gamma}(\mathbf{z}|\mathbf{x}^{\mathrm{o}})$ and

$$w_l = \frac{r_l}{r_1 + \ldots + r_L}, \text{ with } r_l = \frac{p_{\boldsymbol{\theta}}(\mathbf{x}^{\text{o}}|\mathbf{z}_{(l)})p(\mathbf{z}_{(l)})}{q_{\boldsymbol{\gamma}}(\mathbf{z}_{(l)}|\mathbf{x}^{\text{o}})}.$$

Multiple imputation, i.e. sampling from $p_{\theta}(\mathbf{x}^{\mathsf{m}}|\mathbf{x}^{\mathsf{o}})$, can be done using **sampling importance resampling** according to the weights w_{l} for large L.

Single imputation of UCI data sets (50% MCAR)

	Banknote	Breast	Concrete	Red	White	Yeast
MIWAE	0.446 (0.038)	0.280 (0.021)	0.501 (0.040)	0.643 (0.026)	0.735 (0.033)	0.964(0.057)
MVAE	0.593 (0.059)	0.318 (0.018)	0.587(0.026)	0.686 (0.120)	0.782 (0.018)	0.997 (0.064)
missForest	0.676 (0.040)	0.291 (0.026)	0.510 (0.11)	0.697 (0.050)	0.798 (0.019)	1.41 (0.02)
PCA	0.682 (0.016)	0.729 (0.068)	0.938 (0.033)	0.890 (0.033)	0.865 (0.024)	1.05(0.061)
kNN	0.744 (0.033)	0.831 (0.029)	0.962(0.034)	0.981 (0.037)	0.929 (0.025)	1.17 (0.048)
Mean	1.02 (0.032)	1.00 (0.04)	1.01 (0.035)	1.00 (0.03)	1.00 (0.02)	1.06 (0.052)

Mean-squared error for single imputation for various continuous UCI data sets.

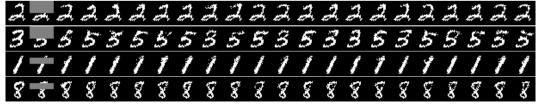
Imputation incomplete versions of binary MNIST

Single imputations:

Imputation incomplete versions of binary MNIST

Single imputations:

Multiple imputations:



Classification of binary MNIST (50% MCAR pixels)

	Test accuracy	Test cross-entropy
Zero imputation	0.9739 (0.0018)	0.1003 (0.0092)
missForest imputation	0.9805 (0.0018)	0.0645 (0.0066)
MIWAE single imputation	0.9847 (0.0009)	0.0510 (0.0035)
MIWAE multiple imputation	0.9870 (0.0003)	0.0396 (0.0003)
Complete data	0.9866 (0.0007)	0.0464 (0.0026)

Learn more about MIWAE at poster 9 in the Pacific ballroom at 6.30!

Thanks for your attention:)