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Graphs are ubiquitous

@ How do we learn representations of
T T nodes in a graph?

E.g., friendship links on social
O 00 e networks (link prediction),

ST s L living status of organisms in ecological
networks (node classification)

DT e D Useful for several prediction tasks.
o

Social, biological, information
networks etc.
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Latent Variable Model of a Graph

« Graphs are represented as adjacency matrices A € {0,1}"**"
» For every node i, we associate a latent vector representation z; € R¥

Example graph Adjacency matrix Latent feature matrix
0 1 0 1 /Z{
11 0 1 O T
A= | z3
0O 1 0 1 7 = T
1 01 0 Z3
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Graphite: A VAE for Graphs

latent matrix Z € R X ¥ @

Decoder: Generate data

po (A |Z)

adjacency matrix A € {0,1}"*~ ”@




Graphite: A VAE for Graphs

latent matrix Z € R X ¥ @

Decoder: Generate data Encoder: Infer representations

pe (A |Z) qe(Z] A)

adjacency matrix A € {0,1}"* <"
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Graphite: Learning & Inference

Q Given: Dataset of adjacency matrices, D,
Z

po(A|Z) | q4(Z] A)
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Graphite: Learning & Inference

Q Given: Dataset of adjacency matrices, D,
Z
Learning objective: rg?px ELBO(8, ¢; Dy)

po(A|Z) | q4(Z] A)




Graphite: Learning & Inference

Given: Dataset of adjacency matrices, D,

@ Learning objective: rg?px ELBO(8, ¢; Dy)
Test time use cases
Generative modeling tasks
po (A |Z) q¢( Z| A) - Density estimation, clustering nodes,
compressing graphs etc.

Graph tasks

- Link Prediction: Denoise graph

- Semi-supervised node classification: Feed z; for
labelled nodes to a classifier
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Parameterizing Graph Autoencoders

@\ qe(Z| A)
GNN

Encoding g, ( Z| A): Graph Neural Network (GNN)
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Parameterizing Graph Autoencoders

7
po (A |Z) Q\ qe(Z] A)

?

GNN

Encoding g, ( Z| A): Graph Neural Network (GNN)

Decoding py (A |Z): Challenging to “upsample”
graphs given latent representations
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Decoding Graphs - MLP

ZeRnXk

po (A |Z)

A € {01} %"

MLP

Option 1: Multi-layer Perceptrons (MLP)

Simonovsky et al., 2018

0 (n*d + dk) total parameters for single
hidden layer of width d
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Decoding Graphs - RNN

Z E Rn X k
Option 2: Recurrent Neural Network (RNN)
You et al., 2018
pe (A |Z) RNN
Arbitrary ordering of nodes @
A € {0,1}1 %7 required for training

e.g., BFS, DFS
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Graphite - Decoding Graphs using GNN

7 € R X k
Key idea
Learn the low-rank structure of adjacency
Al|Z
Po (A |Z) GNN matrix A in the latent space Z

A € {01} %"



Graphite - Decoding Graphs using GNN

ZeRnXk

po (A |Z)

A € {01} %"

GNN

* For fixed number of iterations:
Step 1 (Low rank matrix reconstruction)
Map Z to an intermediate graph A via an inner product
A~777



Graphite - Decoding Graphs using GNN

ZeRnXk

po (A |Z)

A € {01} %"

GNN

* For fixed number of iterations:
Step 1 (Low rank matrix reconstruction)
Map Z to an intermediate graph A via an inner product
A~777

Step 2 (Progressive refinement)
Refine Z by message passing over A using a GNN
7 = GNNg(A)



Graphite - Decoding Graphs using GNN

ZER”XR

po (A |Z)

A € {01} %"

GNN

* For fixed number of iterations:
Step 1 (Low rank matrix reconstruction)
Map Z to an intermediate graph A via an inner product
A~777

Step 2 (Progressive refinement)
Refine Z by message passing over A using a GNN
7 = GNNg(A)
« Output step: Set py (A |Z) = Bernoulli(sigmoid(ZZ™'))



Graphite - Decoding Graphs using GNN

Z E Rn X Kk
- Unlike MLP, GNN decoder with

single hidden layer of length d has
pe (A |Z) GNN 0(dk) parameters
- Unlike RNN, no arbitrary ordering of

iInput nodes is required

A € {01} %"

Decoding is also computationally efficient.
See paper for details.




Empirical Results - Density Estimation

Baseline VGAE [Kipf et al., 20106]
GNN Encoder + Non-learned Inner Product Decoder. No iterative refinement.

Negative log-likelihoods. Lower is better.
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Empirical Results - Link Prediction

AUC. Higher is better.
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Empirical Results - Semi-supervised
Node Classification

Percentage accuracy. Higher is better.
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Summary

Graphite: A latent variable generative model for graphs where both encoder

and decoder are parameterized by graph neural networks.

« Encoder performs message passing on input graph
« Decoder iteratively refines inner product graphs

For more details, please visit us at Poster #7.
Code: https://github.com/ermongroup/graphite

po (A |Z)
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N

GNN

GNN

qe(Z| A)


https://github.com/ermongroup/graphite

