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Motivation: Normalizing flows

For invertible fp : € — Z and base density p.(€),

0fy ' (2)

pz(2) =p(fy ' (2)) 'det =

o Flows generalize autoregressive models for continuous data, allowing

increased model flexibility and non-autoregressive generation.

Kingma and Dhariwal 2018, van den Oord et al. 2017, Rezende and Mohamed 2015
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Goal: Flows for discrete data
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o For discrete sequences MLE autoregressive models are ubiquitous. Can flows

go beyond AR models for discrete sequences?

Figure: OpenNMT
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Challenges and approach

@ Discrete change of variables poses theoretical and practical challenges

compared to continuous change of variables.
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@ Latent variable model where prior p(z1.7)
captures dynamics of discrete data over
time.

@ Key: weak conditionally independent

emission model.

o VAE for inference, optimize ELBO.

@ Pacific Ballroom
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Challenges and approach

Discrete change of variables poses theoretical and practical challenges

compared to continuous.

@ Discrete data is inherently highly multimodal.

@ Specialized flows for multimodal sequences:

o Model dependencies across dimension and across time.
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in time ()
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Challenges and approach

Discrete change of variables poses theoretical and practical challenges

compared to continuous.
@ Discrete data is inherently highly multimodal.

@ Specialized flows for multimodal sequences:

o Model dependencies across dimension and across time.
o Replace underlying affine transformation with non-linear transformation
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Experiments: Character-level LM, PTB

Model Test NLL Reconst. KL
LSTM 1.41 - -

Independent-across-time flow 2.90 0.15 2.77
Autoregressive () 1.42 0.10 1.37
Autoregressive in time () 1.46 0.10 1.43
Non-autoregressive (—) 1.63 0.21 1.55

o KL always makes up > 90% of loss, indicating continuous flow models vast

majority of uncertainty.

o Additional experiments on polyphonic music generation.
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Conclusions

@ Latent variable model for discrete sequences modeling discrete dynamics in

continuous latent space with continuous flows.

@ See poster for details of approach, more experimental results, and generation
speed comparison.

Poster #3 @ Pacific Ballroom, for details and more experiments
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