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Bandit multiclass classification

Fort=1,2,...,T:
1. Example (xt, yt) is chosen, where
x; € R¥ is the feature (shown
to the learner),

€ [K] is the label (hidden).
yt € [K] is the label (hidden) @

2. Predict class label y; € [K]. AL —
3. Observe feedback
z = 1[y: # ye] € {0,1}.

Goal: minimize the total number of mistakes Z;l Zt.
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(wy,x) > (wy,x)+7, WY #vy,
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(wy —wo,z) =0

(w; —ws,z) =0 (wy —ws,x) =0
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Related work

Algorithm Mistake Bound Efficient?
Minimax algorithm [DH13] | O(K/~?) No
Banditron [KSST08] ! O(V/TK/~?) Yes
This work 2O(min(K log?(1/7):7/1/710g K)) | Yes

Contribution: first efficient algorithm that breaks the v/T barrier

!See also [HK11, BOZ17, FKL'18, ..] that have similar guarantees
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If > 1 of them respond YES:
yt < any one of those YES labels

If all of them respond NO:
Yt < uniform from {1,... K}

E[#mistakes(alg)] < K ) ; #mistakes(/)
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