Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case

Alina Beygelzimer (Yahoo!)

Devanathan Thiruvenkatachari (NYU)

David Pal (Yahoo!)

Chen-Yu Wei (USC)

Balazs Szorenyi (Yahoo!)

Chicheng Zhang (Microsoft)

For
$$t = 1, 2, ..., T$$
:

For
$$t = 1, 2, ..., T$$
:

1. Example (x_t, y_t) is chosen, where

For t = 1, 2, ..., T:

1. Example (x_t, y_t) is chosen, where $x_t \in \mathbb{R}^d$ is the feature (shown to the learner),

For t = 1, 2, ..., T:

1. Example (x_t, y_t) is chosen, where $x_t \in \mathbb{R}^d$ is the feature (shown to the learner),

 $y_t \in [K]$ is the label (hidden).

For t = 1, 2, ..., T:

1. Example (x_t, y_t) is chosen, where $x_t \in \mathbb{R}^d$ is the feature (shown to the learner), $y_t \in [K]$ is the label (hidden).

2. Predict class label $\hat{y}_t \in [K]$.

For t = 1, 2, ..., T:

1. Example (x_t, y_t) is chosen, where $x_t \in \mathbb{R}^d$ is the feature (shown to the learner),

 $y_t \in [K]$ is the label (hidden).

- 2. Predict class label $\hat{y}_t \in [K]$.
- 3. Observe feedback $z_t = \mathbb{1} \left[\widehat{y}_t \neq y_t \right] \in \{0, 1\}.$

For t = 1, 2, ..., T:

1. Example (x_t, y_t) is chosen, where $x_t \in \mathbb{R}^d$ is the feature (shown to the learner),

 $y_t \in [K]$ is the label (hidden).

3. Observe feedback $z_t = \mathbb{1} \left[\hat{y}_t \neq y_t \right] \in \{0, 1\}.$

Goal: minimize the total number of mistakes $\sum_{t=1}^{T} z_t$.

Challenge: efficient algorithms in the separable setting

Definition

A dataset is called γ -linearly separable if there exists w_1, \dots, w_K such that

$$\langle w_y, x \rangle \ge \langle w_{y'}, x \rangle + \gamma, \qquad \forall y' \ne y,$$

for all (x, y) in the dataset. (with the constraint $\sum_{i=1}^{K} \|w_i\|^2 \leq 1$)

Challenge: efficient algorithms in the separable setting

Definition

A dataset is called γ -linearly separable if there exists w_1,\ldots,w_K such that

$$\langle w_y, x \rangle \ge \langle w_{y'}, x \rangle + \gamma, \qquad \forall y' \ne y,$$

for all (x, y) in the dataset. (with the constraint $\sum_{i=1}^{K} \|w_i\|^2 \leq 1$)

Algorithm	Mistake Bound	Efficient?

 $^{^1} See$ also [HK11, BOZ17, FKL $^+ 18,$..] that have similar guarantees $_{\Xi}$, $_{\Xi}$, 990.

Algorithm	Mistake Bound	Efficient?
Minimax algorithm [DH13]	$O(K/\gamma^2)$	No

 $^{^1}$ See also [HK11, BOZ17, FKL $^+$ 18, ..] that have similar guarantees 2 2 2

Algorithm	Mistake Bound	Efficient?
Minimax algorithm [DH13]	$O(K/\gamma^2)$	No
Banditron [KSST08] ¹	$O(\sqrt{TK/\gamma^2})$	Yes

 $^{^1} See$ also [HK11, BOZ17, FKL $^+ 18,$..] that have similar guarantees $_{\Xi}$, $_{\Xi}$, 990.

Algorithm	Mistake Bound	Efficient?
Minimax algorithm [DH13]	$O(K/\gamma^2)$	No
Banditron [KSST08] ¹	$O(\sqrt{TK/\gamma^2})$	Yes
This work	$2^{\widetilde{O}(\min(K\log^2(1/\gamma),\sqrt{1/\gamma}\log K))}$	Yes

 $^{^1}$ See also [HK11, BOZ17, FKL $^+$ 18, ..] that have similar guarantees 2 2 2

Algorithm	Mistake Bound	Efficient?
Minimax algorithm [DH13]	$O(K/\gamma^2)$	No
Banditron [KSST08] ¹	$O(\sqrt{TK/\gamma^2})$	Yes
This work	$2^{\widetilde{O}\left(\min(K\log^2(1/\gamma),\sqrt{1/\gamma}\log K)\right)}$	Yes

Contribution: first efficient algorithm that breaks the \sqrt{T} barrier

 $^{^1}$ See also [HK11, BOZ17, FKL $^+$ 18, ..] that have similar guarantees 2 2 2 2

(One-versus-rest approach)

(One-versus-rest approach)

(One-versus-rest approach)

If ≥ 1 of them respond YES: $\hat{y}_t \leftarrow$ any one of those YES labels

If all of them respond NO: $\widehat{y}_t \leftarrow \text{uniform from } \{1, \dots, K\}$

(One-versus-rest approach)

If ≥ 1 of them respond YES: $\widehat{y}_t \leftarrow$ any one of those YES labels

If all of them respond NO: $\widehat{y}_t \leftarrow \text{uniform from } \{1, \dots, K\}$

 $\mathbb{E}[\#\mathsf{mistakes}(\mathsf{alg})] \leq K \sum_i \#\mathsf{mistakes}(i)$

▶ Each non-linear binary classifier learns the support of class i, which lies in an intersection of K-1 halfspaces with a margin [KS04].

▶ Each non-linear binary classifier learns the support of class i, which lies in an intersection of K-1 halfspaces with a margin [KS04].

► Choice: **kernel Perceptron** with **rational kernel** [SSSS11]:

$$K(x,x') = \frac{1}{1 - \frac{1}{2}\langle x, x' \rangle}.$$

▶ Each non-linear binary classifier learns the support of class i, which lies in an intersection of K-1 halfspaces with a margin [KS04].

► Choice: **kernel Perceptron** with **rational kernel** [SSSS11]:

$$K(x,x') = \frac{1}{1 - \frac{1}{2}\langle x, x' \rangle}.$$

► Thu. Poster#158

