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Dynamical Systems with Control

e Robotics
e = g, uyp) * Autonomous Vehicles
e Data Center Cooling

[Cohen et al 18]
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4 )
vs. Linear Quadratic Regulator (LQR):

Adversarial vs Random Disturbance

Online, Convex Costs vs Known Quadratic Loss
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Counterfactual Regret — x;(K) depends on K
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Previous work: H,, Control

* min-max problem, worst case perturbation:

min max
u Wi.T

Z c(xe, u(We_q, ... Wy))

t

* Disturbance w,.7 adversarially chosen
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Compute

* Closed form: Quadratics
* Difficult for general costs
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Adaptivity

e H_ is Pessimistic
* Regret: adapts to favorable sequence

/




Main Result

/ Efficient Online Algorithm: u, ... u; s.t. \
sz:l Ct (xt) ut) R min (Z’ll;zl Ct (xt, th)) < 0(\/’7)
Kestable

- /

e Convexity through Improper Relaxation

* Efficient — Polynomial in system parameters, logarithmicin T



Outline of the approach

1. Improper Learning:
Can we even figure out the best in hindsight policy?
“relaxed” policy class: Next Control a linear function of previous w;

2. Strong Stability =

error feedback policy: learn change to action via “small horizon” of
previous disturbances.

3. Small Horizon =

Efficient Reduction to Online Convex Optimization (OCO) with
memory [Anava et al.]
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