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Online Optimization

Fort=1...T, repeat:

1: Learner chooses a point w;.

2: Environment presents learner with a gradient g; (think
Elgi] = VF(wy)).

3: Learner suffers loss (g, wy).

The objective is minimize regret:

T
Z gta Wt - <gt7 W*>
P S~——

=1
loss suffered benchmark loss
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Running an online algorithm on a stochastic optimization problem
guarantees F(wr) — F(wy) < M.
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The Classic Algorithm: Gradient Descent

Wep1 = W — M8t
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The Classic Algorithm: Gradient Descent

Wep1 = W — M8t

Gradient descent obtains regret:

-
Rr(we) < 4| D lwalPllgel?
t=1
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Gradient Descent
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Preconditioning (Deterministic)

e The gradient VF(w) may not point towards the minimum w;,

N—-’—'

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 4 of 20



Preconditioning (Deterministic)

e The gradient VF(w) may not point towards the minimum w;,

E’/

Key idea: “Preconditioning” means ignoring irrelevant directions.
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Preconditioning (Stochastic)

e Noise can also make g; not point towards the minimum.
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Regret Bounds

e Regret of un-preconditioned stochastic gradient descent (with the
appropriate learning rate) is

T
Re(w) < \| S Iwa 2l = 0 (VT)

e An ideal preconditioned algorithm should obtain regret
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Regret Bound Picture
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Goals

e Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs)
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Using the Covariance Matrix

The typical approach to preconditioning maintains the matrix

.
G= Z g8
t=1

and compute various inverses and square roots of G. This can obtain the
guarantee [CO18; KL17]
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Issues with Using Covariance Matrix

e d* time is too slow - there’s a lot of work on compressing the matrix to
try to make some tradeoff [Luo+16; GKS18; Aga+18].
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Issues with Using Covariance Matrix

e d* time is too slow - there’s a lot of work on compressing the matrix to
try to make some tradeoff [Luo+16; GKS18; Aga+18].

e The regret bound might not even be better!

” T
dZ<W*,gt>2 < HW*sz:”gt”Z
t=1
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Goals

1: Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs).

2: Want an efficient algorithm (O(d) time per update in d-dimensions).

3: Want to never do worse than non-preconditioned algorithms.
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Goals

1: Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs).

2: Want an efficient algorithm (O(d) time per update in d-dimensions).

3: Want to never do worse than non-preconditioned algorithms.

e We will achieve 2 and 3, and sometimes 1.
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Our Contribution

We provide an online learning algorithm that:
e Runs in O(d) time per-update.

e Always achieves regret:

Rr(wye) < [lwi

-
S led?

t=1

e When (2, g we/|lwall) > /L, llgl2 achieves:
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Unpacking the Condition

o Weneed — (3], g, wi/||wall) > 1/ 2/, ||&]|? for preconditioned

regret.

e If g; are mean-zero independent random variables, then standard
concentration results say:

=0

- <th, w*/uw*u> <

t=1

.
th
=1

-
> el
t=1
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Unpacking the Condition

o Weneed — (3], g, wi/||wall) > 1/ 2/, ||&]|? for preconditioned

regret.

e If g; are mean-zero independent random variables, then standard
concentration results say:

T T T
- <th7 W*/HW*H> <D &l =0 (D lel?
=1 t=1 t=1

We achieve preconditioning whenever there is any “signal” in the
gradients.
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Coin Betting [OP16]

e Define wealth: -

WealthT =1—- Z(gt, Wt>

t=1
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Coin Betting [OP16]

e Define wealth: -

Wealthr =1—- Z(gt, Wt>

t=1

e High wealth implies low regret:

Rr(wy) =1—"Y (g, wyx) —Wealthr

]~

=1

out of our control
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Coin Betting [OP16]

e Define wealth: .

Wealthr =1—- Z(gt, Wt>

t=1

e High wealth implies low regret:

Rr(wy) =1—"Y (g, wyx) —Wealthr

]~

t=1

out of our control

e At every iteration, choose a betting fraction v; € R? and use

Wy = thealth —1
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Oracle value for v yields good algorithm

Then

Set v = v,

~ -
Iwal [/ (8w )2

e There are no matrices here!

e But we don’t know this magic value for v.
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Online Learning Inside Online Learning [CO18]

e Define ¢;(v) = —log(1 — (g, v)). Then:

T

R7(v) =Y le(ve) = Le(w)

t=1

e If R%(v,) = O(log(T)), then the final regret Rr(wy) is the same as if
we’d used the constant v; = v,.
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Online Learning Inside Online Learning [CO18]

e Define ¢;(v) = —log(1 — (g, v)). Then:

T

Ry (v) = Z&(w) — Le(vy)

t=1

e If R%(v,) = O(log(T)), then the final regret Rr(wy) is the same as if
we’d used the constant v; = v,.

e We can use online learning to choose the v;!
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Overview of Algorithm Strategy

There exists an unknown v, that would give preconditioned regret.

We can choose v; using online convex optimization on losses

te(v) = —log(1— (g1, vi))-

If we get RY(vi) = S0, £i(vi) — £:(vi) = O(log(T)), then we are as
good as picking v, from the beginning.

So how can we obtain logarithmic regret?
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How to obtain logarithmic regret?

e Strategy: Remember that the constant v, we need to compete with is
= W .50 |[vi]l = O(1/+/T) usually.
Ve G 141 = 00/VT) Y

e This means that we can use a non-preconditioned online learning
algorithm to obtain logarithmic regret:

Vi

Rr(w) < llw] VT = 0(1)
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e Strategy: Remember that the constant v, we need to compete with is
= W .50 |[vi]l = O(1/+/T) usually.
Ve G 141 = 00/VT) Y

e This means that we can use a non-preconditioned online learning
algorithm to obtain logarithmic regret:

Vi

Rr(w) < llw] VT = 0(1)

e Sometimes the best v is not small - this is why we do not always
obtain preconditioned regret.
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Experiments
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Test accuracy on LM1B dataset with Transformer model
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Summary

e When the gradients are “obviously non-random”, we obtain
preconditioned regret bounds without any bad v/d constant factors.

e Otherwise, we decay to the ordinary non-preconditioned regret
bounds (actually, we improve log factors).

e The algorithm runs in the same time complexity as ordinary gradient
descent.

e The empirical performance is promising.
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Summary

e When the gradients are “obviously non-random”, we obtain
preconditioned regret bounds without any bad v/d constant factors.

e Otherwise, we decay to the ordinary non-preconditioned regret
bounds (actually, we improve log factors).

e The algorithm runs in the same time complexity as ordinary gradient
descent.

e The empirical performance is promising.

Thank you!
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