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For a logit W/(x), we call its gradient VW/(x) the saliency map in x.
It should show us the discriminative portions of the image.
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An Unexplained Phenomenon

Models trained to be more robust to adversarial attacks seem to exhibit 'interpretable’
saliency maps!

Original Image Saliency map of a robustified ResNet50

Tsipras et al, 2019: 'Robustness may be at odds with accuracy.’



An Unexplained Phenomenon

Models trained to be more robust to adversarial attacks seem to exhibit 'interpretable’
saliency maps!

Original Image Saliency map of a robustified ResNet50

This phenomenon has a remarkably simple explanation! ]

Tsipras et al, 2019: 'Robustness may be at odds with accuracy.’



Explaining the Interpretability Puzzle

We call
p(x) = inf {[lel[ : F(x +e) # F(x)}
ecX
the adversarial robustness of the classifier F (with respect to euclidean norm || - |).

e Adversarial attacks are tiny perturbations that 'fool’ the classifier
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Explaining the Interpretability Puzzle

We call
p(x) = inf {|le]| : F(x+e) # F(x)}
eeX
the adversarial robustness of the classifier F (with respect to euclidean norm || - |).
e Adversarial attacks are tiny perturbations that 'fool’ the classifier
e A higher robustness to these attacks = greater distance to the decision boundary
[

A larger distance to the decision boundary results in a lower angle between x and
VVi(x)

e We perceive this as a higher visual alignment between image and saliency map

... but not quite



A Simple Toy Example

First, we consider a linear, binary classifier
F(x) =sgn (V(x)),
where W(x) := (x, z) for some z. Then

A TYR)]
e N O]

Note that p(x) = ||x|| - | cos(d)|, where § is the angle between x and z.
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Definition (Alignhment)

Let W = (W1, ..., W"): X — R" be differentiable in x. Then for an n-class
classifier defined a.e. by F(x) = arg max; ¥/(x), we call VW () the saliency
map of F. We further call

[(x, VUFRI(x))|
|

) = T wFe )

9

the alignment with respect to V in x.

For binary, linear models by construction: p(x) = a(x)
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Let W = (W1, ..., W"): X — R" be differentiable in x. Then for an n-class
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the alignment with respect to V in x.

For binary, linear models by construction: p(x) = a(x)
....but already wrong for affine models.



How about neural nets?

There is no closed expression for robustness. One idea is to linearize.

s )

Definition (Linearized Robustness)

Let W(x) be the differentiable score vector for the classifier F in x. We call

W (x) — W(x)
VU (x) = VW)

o(x) := min
p(x) min

the linearized robustness in x, where i* := F(x) is the predicted class at point x.




Bridging the Gap Between Linearized Robustness and Alignment

Using

e a homogeneous decomposition theorem
e the 'binarization’ of our classifier

we get

Theorem (Bound for general models)

Let g := V" (x). Furthermore, let gt := VW(x) and 1 the
non-homogeneous portion of V. Denote by v the || - [[-normed v # 0. Then

5x) < a(x) + x| - 2" — Il + m




Experiments: Robustness vs. Alignment

ImageNet MNIST
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e Linearized robustness is a reasonable approximation
e Alignment increases with robustness
e Superlinear growth for ImageNet and saturating effect on MNIST 10



Experiments: Explaining the Observations

ImageNet MNIST
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Fraction of homogeneous part of logit

e The degree of homogeneity largely determines how strong the connection between
« and g is

e ImageNet: higher robustness + more homogeneity = superlinear growth

e MNIST: higher robustness + less homogeneity = effects start cancelling out
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On the Connection Between Adversarial Robustness and Saliency Map Interpretability

Thank you and see you at the poster!
Pacific Ballroom, #70
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