
On the Connection Between Adversarial Robustness and

Saliency Map Interpretability

Christian Etmann∗,1,3, Sebastian Lunz∗,2, Peter Maass1, Carola-Bibiane Schönlieb2

13th June, 2019

1: ZeTeM, University of Bremen, 2: Cambridge Image Analysis, University of Cambridge, 3: Work done at

Cambridge

1



Saliency Maps

Conv Conv Conv Conv affine layer Ψ(x)

For a logit Ψi (x), we call its gradient ∇Ψi (x) the saliency map in x .

It should show us the discriminative portions of the image.

Original Image Saliency map of a ResNet50
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An Unexplained Phenomenon

Models trained to be more robust to adversarial attacks seem to exhibit ’interpretable’

saliency maps1

Original Image Saliency map of a robustified ResNet50

This phenomenon has a remarkably simple explanation!

1Tsipras et al, 2019: ’Robustness may be at odds with accuracy.’ 3
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Explaining the Interpretability Puzzle

We call

ρ(x) = inf
e∈X
{‖e‖ : F (x + e) 6= F (x)}

the adversarial robustness of the classifier F (with respect to euclidean norm ‖ · ‖).

• Adversarial attacks are tiny perturbations that ’fool’ the classifier

• A higher robustness to these attacks ⇒ greater distance to the decision boundary

• A larger distance to the decision boundary results in a lower angle between x and

∇Ψi (x)

• We perceive this as a higher visual alignment between image and saliency map

. . . but not quite
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A Simple Toy Example

x

z

x

z

First, we consider a linear, binary classifier

F (x) = sgn (Ψ(x)) ,

where Ψ(x) := 〈x , z〉 for some z . Then

ρ(x) =
|〈x , z〉|
‖z‖ =

|〈x ,∇Ψ(x)〉|
‖∇Ψ(x)‖ .

Note that ρ(x) = ‖x‖ · | cos(δ)|, where δ is the angle between x and z .
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Alignment

Definition (Alignment)

Let Ψ = (Ψ1, . . . ,Ψn) : X → Rn be differentiable in x . Then for an n-class

classifier defined a.e. by F (x) = arg maxi Ψi (x), we call ∇ΨF (x) the saliency

map of F . We further call

α(x) :=
|〈x ,∇ΨF (x)(x)〉|
‖∇ΨF (x)(x)‖ ,

the alignment with respect to Ψ in x .

For binary, linear models by construction: ρ(x) = α(x)

....but already wrong for affine models.
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How about neural nets?

There is no closed expression for robustness. One idea is to linearize.

Definition (Linearized Robustness)

Let Ψ(x) be the differentiable score vector for the classifier F in x . We call

ρ̃(x) := min
j 6=i∗

Ψi∗(x)−Ψj(x)

‖∇Ψi∗(x)−∇Ψj(x)‖ ,

the linearized robustness in x , where i∗ := F (x) is the predicted class at point x .
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Bridging the Gap Between Linearized Robustness and Alignment

Using

• a homogeneous decomposition theorem

• the ’binarization’ of our classifier

we get

Theorem (Bound for general models)

Let g := ∇Ψi∗(x). Furthermore, let g † := ∇Ψ†x(x) and β† the

non-homogeneous portion of Ψ†x . Denote by v̄ the ‖ · ‖-normed v 6= 0. Then

ρ̃(x) ≤ α(x) + ‖x‖ · ‖g † − g‖+
|β†|
‖g †‖ .
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Experiments: Robustness vs. Alignment

ImageNet
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MNIST
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• Linearized robustness is a reasonable approximation

• Alignment increases with robustness

• Superlinear growth for ImageNet and saturating effect on MNIST
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Experiments: Explaining the Observations

ImageNet
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Fraction of homogeneous part of logit

• The degree of homogeneity largely determines how strong the connection between

α and ρ̃ is

• ImageNet: higher robustness + more homogeneity = superlinear growth

• MNIST: higher robustness + less homogeneity = effects start cancelling out
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On the Connection Between Adversarial Robustness and Saliency Map Interpretability

Thank you and see you at the poster!

Pacific Ballroom, #70
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