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Deep neural network Classified as y=0
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Saliency map to highlight salient features

We need to explain Al decisions to humans
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1. Linear approximation of the loss — A" =c gy

2. Isolated features: perturb X (i) keeping all other features fixed
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Desiderata of a New Interpretation Framework

1
\ ((fo(x+ A)y) » £(fo(x),y) + 8 A + 5 ATHLA
. X
Loss function Second Order
p " <
max £(fo(x+A),y) /mAaXI'giA + §NHXA

A2 <p, [Alo<k

; - MIAL -alag]
Group Features —

L1 relaxation
1. Quadratic approximation of the loss

2. Group features: find group of k pixels that maximizes the loss
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Confronting the Second-Order term

Concave for Ay > L/2 where L is
_— the largest eigenvalue of Hy
® Optimization can be non-concave
maximization
® Hessian can be VERY LARGE:
~150k x 150k for 224 x 224 x 3 input

 ———_ Can efficiently compute Hessian

vector product



When Does Second-Order Matter?



When Does Second-Order Matter?

For a deep ReLU network:

Theorem:

H, = W (diag(p) -pp' )W"




When Does Second-Order Matter?

For a deep ReLU network:

« Theorem: H, = W (diag(p) - pp’ )W’

 Theorem: If the probability of the predicted class is close to
one and the number of classes is large:

A" ~cgy = Second-Order » First-Order
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First-order Second-order
Confidence = 0.213 Interpretation Interpretation

Confidence = 0.868

——— e
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Confronting the L, term

1
max[gf(AJr—AtHXA—/b”AHQ— M|l Al ] y =¥
A 2 N

Sm?oth Non—Smooth

N _—

Not smooth at 0

/ Use proximal gradient descent to
® |A|; term is non-smooth optimize the objective.

® How toselect \q{7?
\ Select the A1 value that induces

sparsity within a range (0.75, 1).
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Impact of Group Features

A1=0.0001
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First-Order

S_econd_-Order

Impact of Group Features

A1=0.0001 A1=0.00625 A1=0.0125 A1 =0.025 i’

n=0.0117 n=0.1185 n=0.7136 n=0.9591

A1 =0.0001 A1 =0.00625 A1 =0.0125

n=0.0000 n=0.1418 n=0.9797 n=0.9986

n denotes sparsity




Conclusions

e A new formulation for interpretation

» Second-Order information
» Group Features

e Efficient Computation
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