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Why Deep Learning Interpretation?

We need to explain AI decisions to humans

Classified as y=0

(low-grade 

glioma)

Deep neural network

Saliency map to highlight salient features
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Desiderata of a New Interpretation Framework

2. Group features: find group of k pixels that maximizes the loss

1. Quadratic approximation of the loss 

Loss function
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Confronting the Second-Order term

● Optimization can be non-concave 

maximization

● Hessian can be VERY LARGE:

~150k x 150k for 224 x 224 x 3 input

Concave for       > L/2 where L is 

the largest eigenvalue of 

Can efficiently compute Hessian 

vector product
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When Does Second-Order Matter? 

• Theorem:  If the probability of the predicted class is close to 

one and the number of classes is large:

• Theorem:

For a deep ReLU network:
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Empirical results on the impact of Hessian

RESNET-50 (uses only ReLU)

Confidence of predicted class Confidence of predicted class

SE-RESNET-50 (uses Sigmoid)
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Confronting the L1 term

Use proximal gradient descent to 

optimize the objective.
● term is non-smooth

Select the      value that induces 

sparsity within a range (0.75, 1).

Not smooth at 0

y = |x|

● How to select       ?
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Conclusions

● A new formulation for interpretation 
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● Efficient Computation

➢ Second-Order information

➢ Group Features 
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