

Gaining Free or Low-Cost Transparency with Interpretable Partial Substitute Tong Wang
University of Iowa
Tippie College of Business
tong-wang@uiowa.edu

- + High predictive performance
- non-interpretable

- + High predictive performance
- non-interpretable

A key observation: there might exist a subspace where a black-box is *overkill* and a simple interpretable model can perform just as well as the black-box

A key observation: there might exist a subspace where a black-box is *overkill* and a simple interpretable model can perform just as well as the black-box

The proposed solution: to substitute the black-box model with an interpretable model, where there is no or low-cost of predictive performance

A key observation: there might exist a subspace where a black-box is *overkill* and a simple interpretable model can perform just as well as the black-box

The proposed solution: to substitute the black-box model with an interpretable model, where there is no or low-

cost of predictive performance

Learning Objective

- Predictive performance
- Interpretability of f_i
- Transparency

Define transparency of model: $\frac{D_i}{D}$

 \mathcal{D}_{ι}

Interpretable $\operatorname{model} f_{\iota}$

Learning Objective

- Predictive performance
- Interpretability of f_i
- Transparency

Black-box No Decision $model f_b$ made? Yes

Output: $\hat{y_{\iota}}$ Output: $\hat{y_b}$

 \mathcal{D}_{ι}

Define transparency of model: $\frac{D_i}{D}$

A Hybrid Rule Set

if
$$\mathbf{x}_i$$
 obeys $\mathcal{R}_+, Y = 1$
else if \mathbf{x}_i obeys $\mathcal{R}_-, Y = 0$
else $Y = f_b(\mathbf{x}_i)$

Poster #67

Table 1. An example of a HyRS model

	Table 1. All example of a Hyros model	
	Rules	Model
if	age < 35 and maximum heart rate ≥ 178	\mathcal{R}_+
	OR serum cholestorol ≥ 234 and thal $\neq 3$	
	and the number of vessels ≥ 1	
	$\rightarrow Y = 1$ (heart disease)	
else if	chest pain type $\neq 4$ and age > 40	\mathcal{R}
	$\rightarrow Y = 0$ (no heart disease)	
else	$\rightarrow Y = f_b(\mathbf{x})$	f_b

Model Training

Evaluation:

An efficient frontier that characterizes the trade-off between transparency and accuracy

Performance on Juvenile dataset

if Has any of your family members or friends ever attacked you with a weapon \neq Yes and Have your friends ever hit or threatened to hit someone without any reason? \neq Yes and Have your friends ever broken into a vehicle or building to steal something \neq Yes

then
$$Y = 0$$

else $Y = f_b(\mathbf{x})$

Thank you!

Poster #67 in Pacific Ballroom