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Introduction

A key task in explainable Al is to associate latent representations with input units by
guantifying layerwise information discarding of inputs.
Most explanation methods (e.g., DNN visualization) have coherency & generality issues

« Coherency: requires that a method generates consistent explanations across different
neurons, layers, and models.

« Generality: existing measures are usually defined under certain restrictions on model
architectures or tasks.

Coherency :
Methods Neuron | Layer | Model Generality
Gradient-based v’ X X

X

Inversion-based v~ X X X
LRP X X X X
Ours v~ v~ v’ v’
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Our solution

Considering both coherency and generality

A unified information-based measure: quantify the information of each
Input word that is encoded in an intermediate layer of a deep NLP model.

* The information-based measure as a tool
 Evaluating different explanation methods.
 Explaining different deep NLP models

 This measure enriches the capability of explaining DNNSs.
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Problem

« Quantification of sentence-level information discarding: quantify the
Information of an entire sentence x that is encoded in s.

« Quantification of word-level information discarding: quantify the information
of each specific word x; that is encoded in s.

* Fine-grained analysis of word attributes: analyze the fine-grained reason why s
uses the information of x;.

x = [x], ..., x5]T € X: Input sentence x] : word embedding
s = ®(x) € S: hidden state ®(-): function of the intermediate layer
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Word Information Quantification

Multi-Level Quantification

MI(X;S) = HX) — HX|S) Corpus level
HX|S) MI(X;S) . H(X|S) = J p(s)H(X|s)ds
o SES ]
i HX) = — j p(X'[s) logp(x'[s)dx’ Sentence level |
H(X) XX |

H(X;|s = ®(x)) reflects how H(Xls) = Z H(X;ls) Word level
much information from word '
x; is discarded by s dyrmg | H(X;|s) = — f p(x!|s) log p(x!|s) dx/;
the forward propagation. i x/€X;

* Suppose the words are independent in one sentence.
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Word Information Quantification

Perturbation-based Approximation

We use H(X;|s) to approximate H (X;|s) by minimizing the following loss:

L(@) = EJlo® || =2y H&;s)
=1

€;~N (0,671
| 1maxi1.nize N 11'1i1111imize
information loss difference
T Y HEX9)leono3) d Ec||®(x) —s|?
perturbed ~ -
word X @ @ @ ® @ - f> @ P(x)
embeddings 72 73 o4 s
Maximum
Entropy ﬁ perturbation o @MLE
Principle
word X ° ° ° ° ) O i> ® s
embeddings It o very funny !



Towards a Deep and Unified Understanding of Deep Neural Models in NLP #62

Fine-Grained Analysis of Word Attributes

Disentangle the information of a common concept ¢ away from each word x;

_ / Importance of the i-th word
A; = logp(x;[s) — Ex{exi logp(xils) concerning random words

_ MY ' Importance of the common
Ac = Ex{exc log p(x;s) IEX£€Xi log p(x;s) concept ¢ w.r.t. random words

;¢ = A; — A Indicates the remaining information of the word x; when we
remove the information of the common attribute ¢ from the word.
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Comparative Study

 Three baselines: LRP, gradient-based, perturbation
 Conclusion: our method provides the most faithful explanations for

. : :
ACross timestamp a_naIyS|s Our method clearly shows that the
 Across layer analysis model gradually focuses on the most
« Across model analysis Important parts of the sentence.
LRP Perturbation Gradient Ours
L1 L1 L1
L2 L2 L2
L3 L3 L3
L4 L4 L4
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Figure 3. Saliency maps of different layers comparing with three baselines. Our method shows how information decreases through layers.
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Understanding Neural Models in NLP

We explain four NLP models (BERT, Transformer, LSTM, and CNN):
« What information is leveraged for prediction?

« How does the information flow through layers?

* How do the models evolve during training?

SST-2 (Acc) | CoLA (MCC) | QQP (Acc)
BERT 0.9323 0.6110 0.9129
Transformer 0.8245 0.1560 0.7637
LSTM 0.8486 0.1296 0.8658
CNN 0.8200 0.0985 0.8099
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Understanding Neural Models in NLP

SST-2 CoLA QQP
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Figure 5. Words that different models use for prediction. For QQP, we only show the first question from the question pair.
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Figure 7. Layerwise analysis of word information. For all models other than CNN, the information gradually decreases through layers

» Bert and Transformer use words for prediction, while LSTM and CNN use subsequences of
sentences for prediction.
» Different models process the input sentence in different manners.
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