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Partitional clustering and k-means

® Given a representation of n observations and a measure of similarity,
seek an optimal partition C = {Cy, ..., G} into k groups
® X € RY*" denotes n datapoints, @ € RY** represent k centers

® k-means: assign each observation to the cluster represented by the
nearest center, minimizing within-cluster variance
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Lloyd's algorithm (1957)

Greedy approach: seeks local minimizer of k-means objective, rewritten
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1. Update label assignments: Cj(m) ={x; : 01(-'") is closest center}
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2. Recompute centers by averaging: 0(m+1

Simple yet effective, remains most widely used clustering algorithm



a

IU.IUW Z".&Q

Issues even when

Tl 7 e o

implicit assumptions are met



Drawbacks of Lloyd's algorithm

Even in ideal settings, Lloyd's algorithm is prone to local minima

® Sensitive to initialization, gets trapped in poor solutions, worsens in
high dimensions

® Objective is non-smooth, highly non-convex

e “External” improvements: good initialization schemes (k-means++)

Goal: an “internal” improvement that retains the simplicity of Lloyd's
algorithm, and seeks to optimize the same measure of quality

Solution: annealing along a continuum of smooth surfaces via
majorization-minimization



A geometric approach: k-harmonic means (2001)

e

-1
H(xt, .., xk) = (% ZJ’-(ZI xj*1> as a proxy for min(xg, ..., xx)

Zhang et al. propose instead minimizing the criterion
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A member of the power means family

1
Class of power means: My(z) = (% PO zf) " for z; € (0, 00)

s = 1 yields arithmetic mean, s = —1 yields harmonic mean, etc

® Continuous, symmetric, homogeneous, strictly increasing

Will be useful to generalize the good intuition behind KHM

Classical mathematical results = nice algorithmic properties

1. Well-known lim Ms(z,...,zx) = min{z,...,z}
S—>—00

2. Power mean inequality Ms(z1,...,2zx) < My(z1,...,2¢), s<t



From power means to clustering criteria

1
Recall My(z) = (% Zf:l Zf) ’

0 =3 (2 Ik — 077 (KHM)

-1 "=t
® substitute z; = ||x; — 6;]|? into M_1(z), sum over i

n

f-o(8) = Z lg_igk |x; — 6|2 (k-means)

i=1

® the same, substituting instead into “M_.(2)"

What about all the other power means?



A continuum of smoother objectives
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Figure: A cross-section of the k-means objective —f_,(0) with k =3
clusters in dimension d = 1. Third center is fixed at its true value.



A continuum of smoother objectives
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(b) s = —1.0 (KHM)



A continuum of smoother objectives
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Gradually approaching the k-means criterion

Proposition:  For any {s(™} — —oco, lim min f,um)(8) = min f_..(6).
m—oo 0 0

® Choosing one instance (i.e. f_1) as proxy may not always be a good
idea, now interpreted as early stopping along solution path

e Starting at s(%) < 1, gradually decreasing s — —oo can be
understood as a form of annealing
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Toward an iterative solution: majorization-minimization

A surrogate g(0 | 6,,) is said to majorize the function (@) at 8, if
f(0m) = g(O0m|6Om) tangency at 6,
() < g(0|6n) domination for all .

MM algorithm: iterates 0,11 = argming(0 | 8,,)
0

® Example: Expectation-Maximization (EM) is an example of MM

® Lloyd’s algorithm can be considered EM for Gaussian mixtures with
limiting 02 — 0
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lllustration of MM algorithm
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By all means, k-means

Algorithm 1 Power k-means algorithm pseudocode

1: Initialize s(®,0%; input data & € R"*¢, constant 5 > 1:

2: repeat
-1
1 _
Al 0> 1|\wz—e<’">n2s) s — 5720
4 0(m+1) Zw(m+1) Zw(m—l-l) z
5: stm+1) . s(m) (optlonal)

6: until convergence

- Same O(nkd) time complexity as Lloyd; one additional parameter s©

Proposition:  For any decreasing sequence s\ < 1, the iterates ot
produced by Algorithm 1 generates a decreasing sequence of objective
values fs(m)(e(m)) bounded below by 0. As a consequence, the sequence
of objective values converges.
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The shape of power means to come

Gradient has a nice form: iMs(zl, ceZK) = (
0z;

Quadratic form of Hessian (not shown) shows that

d s %_11 s—1
sz‘) PE

M;(z) is concave for s < 1

™2z - 2™)
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Minimizing power means objectives

Let WI.E.’") = a%jl\/ls(Hx; — 6\ 12, |Ix; — 6\™|12) for a given value 6™

cm

n k
L Wi xs — 612 = g(6] 6'™)

Unlike objective f(8), the right-hand side g(6 | 8™) is easy to minimize!

4 m A 1 m
0= 72ZW’§- )(x,-—OJ-), 0j = ni(m)zwlﬁ )X,'.
i=1 ij
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Analogous experiment in KHM paper when d = 2

Type 2 initialization.

Type 3 initialization.

Type 1 initialization.
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Performance comparison

Table: Variation of information under k-means++ initialization

d=2 d=5 d=10 d=20 d=50 d=100 d =200
Lloyd 0.637 0.261 0.234 0.223 0.199 0.206 0.183
KHM 0.651 0.328 0.339 0.319 0.263 0.280 0.231

=1 | (0.593) (0.199) 0133 0136 0084 0087  0.069
-3 0593 0226 (0.111) (0.069) (0.022) (0.027)  0.026
-9 0608 0252 0199 0169  0.078 0036  (0.026)

—18 0.615 0.259 0.218 0.208 0.140 0.101 0.077

Power k-means performs best for all choices of s(®) under good seedings!
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Performance comparison

Table: Root k-means quality ratio with k-means++ initialization

d=2 d=5 d=10 d=20 d=50 d=100 d =200
Lloyd | 1.036 1236 1363 1411 1476  1.492 1.481
KHM | 1044 1200 1473 1504 1556  1.586 1.556
=1 | (1.029) (1.164) 1185 1221 1178  1.181 1.149
-3 1.030  1.187  (1.155) (1.110) (1.044) (1.054) (1.059)
-9 1032 1220 1203 1206 1192  1.086 1.069
-18 1034 1228 1328 1370  1.351 1.254 1.203

Other measures such as adjusted Rand index convey the same trends
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Closing remarks

® KHM degrades rapidly as d increases, and its benefits become less
noticeable even in the plane with the availability of good seedings

® Power k-means succeeds in settings where Lloyd's and KHM break
down, despite “ideal” setting

® Speed: power k-means takes ~ 50 iterations (= 20 seconds) on
MNIST with n = 60000, d = 784

e Convergence rates = optimal annealing schedules, choices of s(9)?

® Bregman and other non-Euclidean extensions
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Thank you!

Poster #96

jason.q.xu@duke.edu // jasonxu90.github.io
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