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Motivation
Modern learning (e.g. deep learning) involves fitting nonlinear models

Mystery

# of parameters >> # of training data

Challenges

Optimization: Why can you find a global optima despite nonconvexity?

Generalization: Why is the global optima any good for prediction?
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Prelude: over-parametrized linear least-squares

min
θ∈Rp

L(θ) := 1

2
‖Xθ − y‖2`2 with X ∈ Rn×p and n ≤ p.

Gradient descent starting from θ0 has three properties:

Global convergence

Converges to closest
global optima to θ0

Follows a direct
trajectory
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Over-parametrized nonlinear least-squares

min
θ∈Rp

L(θ) := 1

2
‖f(θ)− y‖2`2 ,

where

y :=


y1
y2
...
yn

 ∈ Rn, f(θ) :=


f(x1;θ)
f(x2;θ)

...
f(xn;θ)

 ∈ Rn, and n ≤ p.

Run gradient descent: θτ+1 = θτ − ητ∇L(θτ )

Gradient and Jacobian

∇L(θ) = J (θ)T (f(θ)− y).

J (θ) = ∂f(θ)
∂θ ∈ Rn×p is the Jacobian matrix

Intuition: Jacobian replaces the feature matrix X
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Gradient descent trajectory

Assumptions

minimum singular value at initialization: σmin (J (θ0)) ≥ 2α

maximum singular value: ‖J (θ)‖ ≤ β
Jacobian smoothness: ‖J (θ2)− J (θ1)‖ ≤ L ‖θ2 − θ1‖`2
Initial error: ‖f(θ0)− y‖`2 ≤

α2

4L

Theorem (Oymak and Soltanolkotabi 2018)

Assume above over a ball of radius R =
‖f(θ0)−y‖`2

α around θ0 and Set η = 1
β2 .

Global convergence:

‖f(θτ )− y‖2`2 ≤
(
1− 1

2

α2

β2

)τ
‖f(θ0)− y‖2`2

Converges to near closest global minima to initialization:

‖θτ − θ0‖`2 ≤
β

α
‖θ∗ − θ0‖`2

Takes an approximately direct route
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Concrete example: One-hidden layer neural net

Training data:
(x1, y1), (x2, y2), . . . , (xn, yn)

Loss:
L(v,W ) :=

∑n
i=1

(
vTφ(Wxi)− yi

)2
Algorithm: gradient descent
with random Gaussian initialization

Theorem (Oymak and Soltanolkotabi 2019)

As long as
#parameters & (#of training data)2

Then, with high probability

Zero training error: L(vτ ,Wτ ) ≤ (1− ρ)τ L(v0,W0)

Iterates remain close to initialization



Further results and applications

Extensions to SGD and other loss functions

Theoretical justification for

Early stopping

Robustness to label noise
Generalization

Other applications

Fitting generalized
linear models

Low-rank matrix recovery



Conclusion

(Stochastic) gradient descent has three intriguing properties

Global convergence

Converges to near closest
global optima to init.

Follows a direct
trajectory
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