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Deep Linear Neural Network
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* Minimize the quadratic loss over training data
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* This work: gradient descent with standard independent random initialization
on{ w.rt. Wy, ..., W;

W;(t+1)=W(t) - 77 T (W1(t) WL(t))
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Why Studying Deep Linear Networks?

* Linear networks exhibit common challenges in optimization for deep
learning

* Non-convex
 Non-strict saddle

* Can have “vanishing gradient” or “exploding gradient”

* Deep linear networks may help generalization
H
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O—O0—0—0— - —O
W1 W- W3 wp
Theorem : GD with random initialization w.h.p. needs

2L jterations to converge to global min

Questions: Can we get efficient convergence for wide linear nets? If so,
how wide is enough?
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— hidden width=m

1
f(Wb ---;WL) = > ?:1||WL W1xi _ Yi||2

* m: width of every hidden layer

Main Theorem: if m > ()(L), then GD with random init converges to global min
at a linear rate w.h.p,, i.e.

loss(t) — OPT < e~ (loss(0) — OPT)

Width provably matters
narrow network = exp(L) time
wide network = poly(L) time



Comparison with Previous Work

: Global
Paper Init Opt soln Data ona -
convergence:
: . PD or close .
identity to identity whitened no
H balanced full rank whitened no
This paper random any any yes
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