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Graph structure information Current limitations: ) Our goals propose/provide:
as a prior often have: e only focus on specific loss e an algo. for general loss
e better classification, e expensive full-gradient under stochastic setting
regression performance calculation e convergence analysis
e stronger interpretation e cannot handle complex e real-world applications
structure
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Structured sparse learning

Given M(M) = {w : supp(w) € M}, the structured sparse learning problems can be formulated as

in F fi( h
WEn)Vl[rzM) (w) : Z (w), where

@ F(w) is a convex loss such as least square, logistic loss, ...

@ M(M) models structured sparsity such as connected subgraphs,
dense subgraphs, and subgraphs isomophic to a query graph,




Inspired by two recent works Hegde et al. (2016); Nguyen et al. (2017)

(" Algorithm 1 GRAPHSTOIHT

Input: 7, F(-), My, My
Initialize: w® and t =0
fort=0,1,2,... do

b* = P(Vfe,(
Wt+1

w'), My)

= P(w' — n:b*,M7)
end for

Return wit!
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Weighted Graph Model
M ={S:|5| <3,S is connected } (Hegde et al., 2015a)

Orthogonal Projection Operator P(-, M) :

RP — RP defined as

P(w,M) = argmin ||w — w'|?

w’'e M(M)

e s-sparse set
e Weighted Graph Model
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Two differences from STOIHT:
o project the gradient V£, (-)
e projects the proxy onto M(My).

Why projection b* = P(Vfe (w'), My) ?

e Both of them solve the same projection problem
e Intuitively, sparsity is both in primal and dual space
e Remove some noisy directions at the first stage
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Two assumptions in M (M):

© fi(w): [-Restricted Strong Smoothness
F(w): a-Restricted Strong Convexity

@ Efficient Approximated projections:
e P(-,My) with approximation factor cy

o P(-,My) with approximation factor ¢
Bf(w,w’) = f(w) — f(w') — (VFf(wW'),w — w’)

Theorem 1 (Linear Convergence)

Let w® be the start point and choose 1; = 1, then wtl of Algorithm 1 satisfies

(o2
Ee,yllw' — w*|| < R WO — w4+ 1

where

n:(l—i-CT)( 04/8772—204’174—1-}-\/1-04%),()40:67.[0”'— VaBt? —2ar+ 1,80 = (1 + cy)7

Q
o= (ﬁ + °—ﬁ°2>Egrnv/fgt(w*)|| e, Ve (W)
0

, andn,T € (0,2/8).
oy | and n.7 € (0,2/8)




Graph Linear Regression

X e R™P, e~ N(0, 1) el y=Xw*+e€
Consider the least square loss

n

1 n
argmin  F(w) := =
supp(w)EM (1) n ; 2

Contraction factor

Algorithm K

GRAPHIHT

(1+CT)(f+zm)\/3

GRAPHSTOIHT (1+C7—)( 1+5 L2 f(:{é))\/g

e For GRAPHIHT, ¢ < 0.0527
e For GRAPHSTOIHT, § < 0.0142
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Graph Logistic Regression

w*::&

X €ERPy; € {+1, -1} —= (14 e wix))-1
Consider the logistic loss
1<~ n /e
arg min - — h(w, i)+ *HWHQ
supp(w)EM(M) negm j=1

where h(w, jj) =

If x; is normalized, then F(w) satisfies
A-RSC and each f;(w) satisfies (o + (1 +
V)0 max)-RSS. The condition of x < 1 is
A S 243
A+ n(1 + v)0max/4m ~ 250’

with prob. 1 — pexp (—0max//4), where
Omax = Amax(D m/n 1 E[x;x]]) and v > 1.
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Simulation Dataset

@ each entry \/mXj; ~ N(0,1)

@ supp(w™*) is generated by random walk

@ Entries of w* from N(0,1)

@ Weighted Graph Model (Hegde et al., 2015b)
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—n =02
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Breast Cancer Dataset

@ 295 samples with 78 positives (metastatic)
and 217 negatives (non-metastatic) provided
in (Van De Vijver et al., 2002).

@ PPI network with 637 pathways is provided
n (Jacob et al., 2009). We restrict our
analysis on 3,243 genes (nodes) with 19,938
edges. These cancer-related genes form a
connected subgraph.

BackGround Angio Text

1.5 20 25

3.0 515 20 25 30 3515 20

25 3.0

3.5

Oversampling ratio lu/s Oversampling ratio m/s  Oversampling ratio m/s
Algorithm Cancer related genes [[wf][o AUC
GRAPHSTOIHT BRCA2, CCND2, CDKNIA, ATM, AR, TOP2A 051.7 0.715
GRAPHIHT ATM, CDKN1A, BRCA2, AR, TOP2A 055.2 0.714
2 -parn BRCA1, CDKN1A, ATM, DSC2 061.2 0.675
STOIHT MKI67, NAT1, AR, TOP2A 059.6 0.708
£'/02-Epce  CCND3, ATM, CDH3 051.4 0.705
£ -Epce CCND3, AR, CDH3 039.9 0.698
£1/¢2-Patn BRCAIL, CDKN1A 147.6  0.705
THT NAT1, TOP2A 067.9  0.707




See you at Poster #92
Thank you!



