Stochastic Iterative Hard Thresholding for Graph-Structured Sparsity Optimization

Baojian Zhou¹, Feng Chen¹, and Yiming Ying²

¹Department of Computer Science, ²Department of Mathematics and Statistics, University at Albany, NY, USA

06/13/2019 Poster # 92

Graph structure information as a prior often have:

- better classification, regression performance
- stronger interpretation

Current limitations:

- only focus on specific loss
- expensive full-gradient calculation
- cannot handle complex structure

Our goals propose/provide:

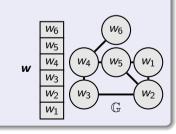
- an algo. for general loss under stochastic setting
- convergence analysis
- real-world applications

Structured sparse learning

Given $\mathcal{M}(\mathbb{M}) = \{ \mathbf{w} : \text{supp}(\mathbf{w}) \in \mathbb{M} \}$, the structured sparse learning problems can be formulated as

$$\min_{\boldsymbol{w} \in \mathcal{M}(\mathbb{M})} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w}), \text{ where }$$

- F(w) is a convex loss such as least square, logistic loss, ...
- $\mathcal{M}(\mathbb{M})$ models structured sparsity such as connected subgraphs, dense subgraphs, and subgraphs isomorphic to a query graph, ...



Inspired by two recent works Hegde et al. (2016); Nguyen et al. (2017)

Algorithm 1 GraphStoIHT

- 1: Input: $\eta_t, F(\cdot), \mathbb{M}_{\mathcal{H}}, \mathbb{M}_{\mathcal{T}}$
- 2: **Initialize**: \mathbf{w}^0 and t = 0
- 3: **for** $t = 0, 1, 2, \dots$ **do**
- 4: Choose ξ_t from [n] with prob. p_{ξ_t}
- 5: $m{b}^t = \mathrm{P}(
 abla f_{\xi_t}(m{w}^t), \mathbb{M}_{\mathcal{H}})$
- 6: $\mathbf{w}^{t+1} = P(\mathbf{w}^t \eta_t \mathbf{b}^t, \mathbb{M}_T)$
- 7: end for
- 8: **Return** w^{t+1}

Orthogonal Projection Operator $P(\cdot, \mathbb{M})$: $\mathbb{R}^p \to \mathbb{R}^p$ defined as

$$\mathrm{P}(\boldsymbol{w},\mathbb{M}) = \operatorname*{arg\,min}_{\boldsymbol{w}' \in \mathcal{M}(\mathbb{M})} \|\boldsymbol{w} - \boldsymbol{w}'\|^2$$

- s-sparse set
- Weighted Graph Model

Two differences from STOIHT:

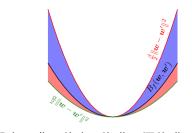
- project the gradient $\nabla f_{\xi_t}(\cdot)$
- projects the proxy onto $\mathcal{M}(\mathbb{M}_{\mathcal{T}})$.

Why projection $\boldsymbol{b}^t = \mathrm{P}(\nabla f_{\xi_t}(\boldsymbol{w}^t), \mathbb{M}_{\mathcal{H}})$?

- Both of them solve the same projection problem
- Intuitively, sparsity is both in primal and dual space
- Remove some noisy directions at the first stage

Two assumptions in $\mathcal{M}(\mathbb{M})$:

- **1** $f_i(\mathbf{w})$: β -Restricted Strong Smoothness
 - F(w): α -Restricted Strong Convexity
- ② Efficient Approximated projections:
 - ullet $\mathrm{P}(\cdot,\mathbb{M}_{\mathcal{H}})$ with approximation factor $c_{\mathcal{H}}$
 - ullet $\mathrm{P}(\cdot,\mathbb{M}_{\mathcal{T}})$ with approximation factor $c_{\mathcal{T}}$



$$B_f(\mathbf{w}, \mathbf{w}') = f(\mathbf{w}) - f(\mathbf{w}') - \langle \nabla f(\mathbf{w}'), \mathbf{w} - \mathbf{w}' \rangle$$

Theorem 1 (Linear Convergence)

Let \mathbf{w}^0 be the start point and choose $\eta_t = \eta$, then \mathbf{w}^{t+1} of Algorithm 1 satisfies

$$\mathbb{E}_{\xi_{[t]}} \| \boldsymbol{w}^{t+1} - \boldsymbol{w}^* \| \leq \kappa^{t+1} \| \boldsymbol{w}^0 - \boldsymbol{w}^* \| + \frac{\sigma}{1 - \kappa},$$

where

$$\kappa = (1 + c_{\mathcal{T}}) \left(\sqrt{\alpha \beta \eta^2 - 2\alpha \eta + 1} + \sqrt{1 - \alpha_0^2} \right), \alpha_0 = c_{\mathcal{H}} \alpha \tau - \sqrt{\alpha \beta \tau^2 - 2\alpha \tau + 1}, \beta_0 = (1 + c_{\mathcal{H}}) \tau$$

$$\sigma = \left(\frac{\beta_0}{\alpha_0} + \frac{\alpha_0 \beta_0}{\sqrt{1 - \alpha_0^2}}\right) \mathbb{E}_{\xi_t} \|\nabla_I f_{\xi_t}(\boldsymbol{w}^*)\| + \eta \mathbb{E}_{\xi_t} \|\nabla_I f_{\xi_t}(\boldsymbol{w}^*)\|, \text{ and } \eta, \tau \in (0, 2/\beta).$$

Graph Linear Regression

$$X \in \mathbb{R}^{m \times p}, \ \epsilon \sim \mathcal{N}(\mathbf{0}, I_m) \xrightarrow{\mathbf{w}^*: \mathbf{v}^*} \mathbf{y} = X\mathbf{w}^* + \epsilon$$

Consider the least square loss

$$\operatorname*{arg\,min}_{\sup p(\boldsymbol{w}) \in \mathcal{M}(\mathbb{M})} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \frac{n}{2m} \|\boldsymbol{X}_{B_{i}} \boldsymbol{w} - \boldsymbol{y}_{B_{i}}\|^{2}.$$

Contraction factor

Algorithm	κ
GRAPHIHT	$(1+c_{\mathcal{T}})\Big(\sqrt{\delta}+2\sqrt{1-\delta}\Big)\sqrt{\delta}$
GRAPHSTOIHT	$(1+c_{\mathcal{T}})\Big(\sqrt{rac{2}{1+\delta}}+rac{2\sqrt{2(1-\delta)}}{1+\delta}\Big)\sqrt{\delta}$

• For GraphIHT, $\delta < 0.0527$ • For GraphStoIHT, $\delta < 0.0142$

Graph Logistic Regression

$$x_i \in \mathbb{R}^p, y_i \in \{+1, -1\}$$
 $\overset{w^*}{\Longrightarrow} (1 + e^{-y_i \cdot \langle w^*, x_i \rangle})^{-1}$

Consider the logistic loss

Consider the logistic loss
$$\underset{\text{supp}(\boldsymbol{w}) \in \mathcal{M}(\mathbb{M})}{\text{arg min}} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \frac{n}{m} \sum_{i=1}^{m/n} h(\boldsymbol{w}, i_j) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2,$$

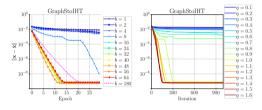
where $h(\mathbf{w}, i_i) = \log(1 + \exp(-y_{i_i} \cdot \langle \mathbf{x}_{i_i}, \mathbf{w} \rangle))$.

If x_i is normalized, then F(w) satisfies λ -RSC and each $f_i(\mathbf{w})$ satisfies ($\alpha + (1 +$ ν) θ_{max})-RSS. The condition of $\kappa < 1$ is

$$\frac{\lambda}{\lambda + n(1 + \nu)\theta_{max}/4m} \geq \frac{243}{250},$$
 with prob. $1 - p \exp\left(-\theta_{max}\nu/4\right)$, where $\theta_{max} = \lambda_{max}\left(\sum_{i=1}^{m/n} \mathbb{E}[\mathbf{x}_{i}, \mathbf{x}_{i}^{\mathrm{T}}]\right)$ and $\nu \geq 1$.

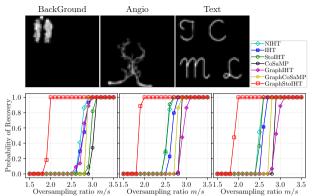
Simulation Dataset

- each entry $\sqrt{m} \boldsymbol{X}_{ii} \sim \mathcal{N}(0,1)$
- supp(w*) is generated by random walk
- Entries of \mathbf{w}^* from $\mathcal{N}(0,1)$
- Weighted Graph Model (Hegde et al., 2015b)



Breast Cancer Dataset

- 295 samples with 78 positives (metastatic) and 217 negatives (non-metastatic) provided in (Van De Vijver et al., 2002).
- PPI network with 637 pathways is provided in (Jacob et al., 2009). We restrict our analysis on 3,243 genes (nodes) with 19,938 edges. These cancer-related genes form a connected subgraph.



Algorithm	Cancer related genes	$\ \mathbf{w}^t\ _0$	AUC
GraphStoIHT	BRCA2, CCND2, CDKN1A, ATM, AR, TOP2A	051.7	0.715
GraphIHT	ATM, CDKN1A, BRCA2, AR, TOP2A	055.2	0.714
ℓ^1 -Path	BRCA1, CDKN1A, ATM, DSC2	061.2	0.675
STOIHT	MKI67, NAT1, AR, TOP2A	059.6	0.708
ℓ^1/ℓ^2 -Edge	CCND3, ATM, CDH3	051.4	0.705
ℓ^1 -Edge	CCND3, AR, CDH3	039.9	0.698
ℓ^1/ℓ^2 -Path	BRCA1, CDKN1A	147.6	0.705
IHT	NAT1, TOP2A	067.9	0.707

See you at Poster #92

Thank you!