Multiplicative
Weights
Update as a
Distributed
Constrained
Optimization
Algorithm:
Convergence
to
Second-order
Stationary
Points Almost
Always

loannis

Ge
Piliouras, Xiao
Wang

Multiplicative Weights Update as a Distributed
Constrained Optimization Algorithm:
Convergence to Second-order Stationary Points
Almost Always

loannis Panageas  Georgios Piliouras  Xiao Wang

Singapore University of Technology and Design

June, 2019



Motivation

Multiplicative

Weights @ Non-concave maximization has been the subject of much

Upd . . . . . .
e recent study in the optimization and machine learning

C ined e . . . . . .
e communities. Constrained maximization is of importance

Optimization

i in many applications such as hidden Markov model and

Convergence

b game theory.

Second-order

el @ Results in [Lee et al., 2017] suggest the avoidance of
Always saddle points for deterministic first-order methods with
random initialization. How ever, the approach has
limitations in certain constrained cases.
@ Question: Is there a provable convergence for the problems

of the form

p
D ();

where P is a non-concave, twice continuously
differentiable function and D is the product of simplices,
ie., D=A1 x ... x A,?



Key Techniques
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@ A classic algorithm for simplicial constrained maximization

Weights
Update as a . .
Distributed is Baum-Eagon algorithm [Baum and Eagon, 1967]:
Constrained
Optimization
Algorithm: gp
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s (1) is not a diffeomorphism in general.
loannis
Panageas @ We use MWU as an instance of Baum-Eagon algorithm
with learning rates:
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(2) is a diffeomorphism with small ;.

@ Use of Center-stable Manifold Theorem [Lee et al., 2017].
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Our Results

Combining the classification of stationary points with
constraints and the Center-stable Manifold Theorem to MWU,
we prove the following:

@ Assume that P is twice continuously differentiable in a set
containing D. There exists small enough fixed stepsizes ¢;
such that the set of initial conditions x° of which the
MWU dynamics converges to fixed points that violate
second order KKT conditions is of measure zero.

@ Assume p is a measure that is absolutely continuous with
respect to the Lebesgue measure and P is a rational
function (fraction of polynomials) that is twice
continuously differentiable in a set containing D, with
isolated stationary points. It follows that with probability
one (randomness induced by 1), MWU dynamics
converges to second order stationary points.
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