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Current Data

Current data not only has large sample size, but also contains some
complex structures.

Image classification
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Problem Statement

encoding empirical or
expected loss for big data
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* A finite/infinite-sum constraint problem

encoding some complex

structures
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s.t. Ax + Z Bijy; =c¢, (1)
j=1

where f(z) : R — R is a nonconvex and smooth function, and g;(y;) : R — R is a convex and
possibly nonsmooth function for all j € [m], m > 1.




-

Contributions

D

2)

3)

In the paper, our main contributions are summarized as follows:

We propose a faster stochastic ADMM ( i.e., SPIDER-ADMM ) method based on the
SPIDER method. Moreover, we prove that the SPIDER-ADMM achieves better optimal

IFO complexity of O(n + n'/?¢~1) for finding an e-approximate stationary point of the
problem (1), which improves the deterministic ADMM by a factor O(n'/2).

We extend the SPIDER-ADMM method to the online setting, and propose a faster on-
line SPIDER-ADMM for nonconvex optimization. Moreover, we prove that the online
SPIDER-ADMM achieves the optimal IFO complexity of O(E_%), which improves the
existing best results by a factor of O(e2).

We give an useful theoretical analysis framework for nonconvex stochastic ADMM meth-
ods with providing the optimal IFO complexity. Based on our new analysis framework, we
also prove that the existing nonconvex SVRG-ADMM and SAGA-ADMM have the opti-

mal IFO complexity of O(n+n?/3¢~1). Thus, our SPIDER-ADMM improves the existing
stochastic ADMM s by a factor of O(n!/%).
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IFO Complexity

Table 1. 1FO complexity comparison of the non-convex ADMM methods for finding an e-approximate stationary point of the problem
(1), ice., E[|VL(z, Y[m), 2)||? < e. n denotes the sample size.

Problem Algorithm Reference IFO
ADMM Jiang et al. (2019) O(ne™ 1)
Finite-sum SVRG-ADMM Huang et al. (2016); Zheng & Kwok (2016b) | O(n+nie™ )
SAGA-ADMM Huang et al. (2016) On+niet)
SPIDER-ADMM Ours O(n+nze t)
Online SADMM Huang & Chen (2018) O(f‘%}
Online SPIDER-ADMM Ours O(e"2)
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Faster Stochastic ADMM (SPIDER-ADMM)

Algorithm 1 SPIDER-ADMM Algorithm

1: Input: b, K, p > 0and n > 0;
2: Initialize: E{]ERd y) € RP, j € [m]and z; € RY;
3: fork=0,1,- K—lda

4: if mod (k‘ q) = ( then

5: Compute v, = = >0 | V fi(z);

6: else

7: Uniformly randomly pick a mini-batch S (|S| = b) from {1,2,--- ,n} with replacement,
then update v, = % > ies (Vft-(:rtk) — V.fz-(:nk_l)) 4+ Vp_1;

8: er;d if .

9:  yytt =argmin,, {£,(z ; "f'[_;+l1] JYis Yl 1m) 2k) T + 3llyi — villE _} forall j € [m];

10:  xp41 = argmin, L, (m y[m] 2k v;b)

11: zpa1 =2 —p (Au+1+z 1 f“—c};

12: end for

13: Output: {x, [, 2} chosen uniformly random from {xy, yf‘fn ] 2k




Convergence Analysis

Theorem 1. Suppose the sequence {xy, yﬁn], Zr) le is generated from Algorithm 1. Let
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= ?n’(p Umaxgmax + -0 (UIIIE.X) + O-l'na,x(H))‘! V2 = S(L + ): V3 = A 2 A > 2 927
Ui Uminp ICI—min?? P

and letb = q, n = m”g‘—f(m 0<a<1),andp= —W then we have

min

3Vmax RO - R*)
K~ ’

K-
. Vma
1;1-1%1}{ E[dm(o OL(xy, y[m] ;

where v = min(x, ol ) with y > 4”};“ Umax = Max{vy, v, v3} and R* is a lower bound of

the function Ry. It implies that the iteration number K satisfies
3Vn‘1a,x(RU - R*)

K = ;
€y

E

then (.~ yﬁ,n]: zi=) Is an e-approximate stationary point of (1), where k* = arg min,, 0.

Remark 1. Theorem 1 shows that the SPIDER-ADMM has O(1/K) convergence rate. Moreover,
givenb = q = [n3], n = 2279 () < o < 1) and p = VITGL | the SPIDER-ADMM has

the optimal IFO of O(n + nz e~ 1) for finding an e-approximate stationary point. In particular, we
can choose o € (0, 1] according to different problems to obtain appropriate step-size 1 and penalty

2 min G . e
parameter p, e.g., set o = 1, we have ) = ‘TT” and p = YLgrck,
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Online SPIDER-ADMM

Algorithm 2 Online SPIDER-ADMM Algorithm

1: Input: by, b, g, K, n > 0and p > 0;
2: Inmitialize: z, € RY, y_? € RP, j € [m] and zy € RY;
3: fork=0,1,--- K —1do

4:  ifmod(k,q) = 0 then
5: Draw S, samples with |S7| = b,, and compute vy, = bl—l > ics: VSi(Tr);
6: else
7 Draw S, samples with |Sy| = by = /b1, and compute

1

Vk = - Z (Vfilzk) = fi(zr-1)) + vi—1;

2 ie S

8: Elgd if
1 : : .

9: yJJr = arg miny, {L£,( J;;”J[j ] LYy 9'[.;+1 ] zk) + %Hyj — y_i:."H?UJ} forall j € [m];
10 x4 = arg mmi,ﬁ (;1: y[m] s 2k s ’U;D)
1 21 = 2k — p(Azgyr + 2321 Bjnyrl c);
12: end for

13: Output: {x,y[,,), 2} chosen uniformly random from {zy, yffm], 2R




Experiments

1. Graph-Guided Binary Classification

Given a set of training samples (a;, b;)™_,, where a; € R?, b; € {—1,1}, then we solve the follow-
ing nonconvex empirical loss minimization problem:

— )+ Al|A
;I;r;:nsz Azl

where f;(z) = - L is the nonconvex sigmoid loss function. We use the nonsmooth regu-
Ll+exp(b;ja; x)

larizer i.e., graph-guided fused lasso, and A decodes the sparsity pattern of graph, which is obtained
by sparse precision matrix estimation.

datasets # samples # features # classes
a9a 32,561 123 2
w8a 64,700 300 2
ijcnnl 126,702 22 2
covtype.binary 581,012 54 2
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Experiments
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Figure 1. Objective value versus CPU time of the nonconvex
graph-guided binary classification model on some real datasets.




Experiments

2. Multi-Task Learning

Given a set of training samples (a;, b;)*_,, where a; € R4 and b; € {1,2,--- ,c}, thenlet D €
R™ ¢ with D;; = 11if j = b;, and D;; = 0 otherwise. This multi-task learning is equivalent to
solving the following nonconvex problem:

1 T
— (X)) 4+ A X, ol X, 2
B SR 0D R(Xul) + Al X ®
where f;(X) = 10g(z;:1 exp(Xj.a;)) — E;:] D;; X a; is a multinomial logistic loss function,

k(| Xij;]) = Blog(l + @) is the nonconvex log-sum penalty function. Next, we change the above
problem into the following form:

R
min ;MX) + Mro||Yill + Azl Y|« (9)

s.t. AX + B1Y: + BoYs =0,

where f;(X) = fé(XJJF)‘l(Z»;j k(| Xi51) —kol| X||1), and ko = £'(0). Here A = [I..; I.] € R?°*¢,
By = [—1,;0] € R?**¢ and By = [0; —1].
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Experiments

datasets # samples # features # classes
letter 15,000 16 26
sensorless 58,509 48 11
mnist 60,000 780 10
covtype 581,012 54 7
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Figure 2. Objective value versus CPU time of the nonconvex multi-task learning on some real datasets.
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