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Agenda

•What we plan to achieve:

– Random perturbation:
Convergence rate of alternating gradient descent (A-GD) to second-order
stationary points (SOSPs) with high probability

•Motivation

– A class of structured non-convex problems

•Numerical Results

– Two-layer linear neural networks:
– Matrix factorization

•Concluding Remarks
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Block Structured Nonconvex Optimization

• Consider the following problem

P : minimize
x,y

f(x,y)

• f(x,y): Rd → R is a smooth nonconvex function

– x ∈ Rdx

– y ∈ Rdy

– d = dx + dy
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Motivation: Nice Landscapes

• There are some nice/benign block structured problems [R.
Ge et al., 2017, J. Lee et al., 2018]
– All local minima are global minima
– Saddle points: very poor compared with local minima
– Every saddle point: strict (Hessian matrix has at least

one negative eigenvalue)

• High dimensional problems: strict saddle points common

M: indefinite

[0, 0]T
[0, 0]T [0, 0]T

minimize
x∈R2×1

‖xxT −M‖2F

local maximum strict saddle local minimum



6

Optimality Conditions

• Common definition of SOSPs

• Common definition of first-order stationary points (FOSPs)

‖∇f(x,y)‖ ≤ ε

where ε > 0, then (x,y) is an ε-FOSP.

If the following holds

‖∇f(x,y)‖ ≤ ε, and λmin(∇2f(x,y)) ≥ −γ

where ε, γ > 0, then (x,y) is an (ε, γ)-SOSP.
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Literature

Algorithms with convergence guarantees to SOSPs:

• Second-order methods (one block)
– Trust region method [Conn et al., 2000]

– Cubic regularized Newton’s method [Nesterov & Polyak, 2006]

– Hybrid of first-order and second-order method [Reddi et al., 2018]

• First-order methods (one block)
– Perturbed gradient descent (PGD) [Jin et al., 2017]

– Stochastic first order method (NEgative-curvature-Originated-from-Noise,
NEON, [Xu et al., 2017])

– Neon2 (finding local minima via first-order oracles) [Allen-Zhu et al., 2017]

– Accelerated methods [Carmon et al., 2016][Jin et al., 2018][Xu et al., 2018]

– Many more
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Literature

• Block structured nonconvex optimization (asymptotic) :

– Block coordinate descent (BCD) [Song et al., 2017][Lee et al., 2017]

– Alternating direction methods of multipliers (ADMM) [Hong et al., 2018]

• Gradient descent can take exponential number of iterations to escape
saddle points [Du et al., 2017]

• But none of these work has shown the convergence rate of block
coordinate descent to SOSPs, even for the two-block case.
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Motivation: Block Structured Nonconvex Problems

• Many problems have block structures in nature.

• We can have faster numerical convergence rates by
leveraging block structures of the problem.
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Motivation: Block Structured Nonconvex Problems

• Matrix Factorization [Jain et al., 2013]

minimize
X∈Rn×k,Y∈Rm×k

1

2
‖XYT −M‖2F

• Matrix Sensing [Sun et al., 2014]

minimize
X∈Rn×k,Y∈Rm×k

1

2
‖A(XYT −M)‖2F

A: linear measurement operator and satisfies the restricted
isometry property (RIP) condition
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Motivation of This Work

Can we solve the nice block structured
nonconvex problems to SOSP?
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Alternating Gradient Descent

x(t+1) = x(t) − η∇xf(x
(t),y(t)) (1)

y(t+1) = y(t) − η∇yf(x
(t+1),y(t)) (2)

• Iterates of A-GD [Bertsekas 1999]:

• Step-size: η ≤ 1/Lmax
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Motivation of Alternating Gradient Descent

minimize
x1,x2

xTMx

M =

[
1 a
a 1

]
• Whole problem: L = 1 + a

• Block-wise: Lmax = 1

a = 1000

A-GD
GD
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Motivation of Alernating Gradient Descent

• A-GD:

– numerically good

– may take a long time to escape from saddle points

• PA-GD: numerically good and convergence rate guarantees
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Matrix Factorization

Convergence comparison between GD and PA-GD for learning a two-layer neural
network, where ε = 10−10, gth = ε/10, tth = 10/ε1/2, r = ε/10.

A two-layer linear neural network:

minimize
U∈Rn×k,V∈Rm×k

l∑
i=1

‖ŷi −UVT x̂i‖22 = ‖Ŷ −UVTX̂‖2F , (3)

• Ŷ and X̂: n = 100,m = 40, k = 20, l = 20, CN (0, 1)

Proposed

Gradient Descent
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Connection with Existing Works

Algorithm Iterations (ε, γ)-SOSP

NEON+SGD [Xu and Yang, 2017]

NEON2+SGD [Allen-Zhu and Li, 2017]

NEON+ [Xu et al, 2017]

PGD [Jin et al, 2017]

(ε, ε1/2)

(ε, ε1/2)

(ε, ε1/2)

(ε, ε1/2)

Õ(1/ε4)

Õ(1/ε4)

Õ(1/ε7/4)

Õ(1/ε2)

Convergence rates of algorithms to SOSPs with the first order
information, where p ≥ 4.

PA-GD [This Work] Õ(1/ε2) (ε, ε1/2)

Accelerated PGD [Jin et al, 2018] Õ(1/ε7/4) (ε, ε1/2)

BCD [Song et al, 2017]

BCD [Lee et al, 2017]

N/A
N/A

(0, 0)

(0, 0)
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Connection with Existing Works

Alternating
gradient
descent

Gradient
descent

Asymptotic
convergence to
SOSPs

Convergence
rate to SOSPs

This Work

Jin, et al, 2017Lee, et al, 2017

Lee, et al, 2017
Song, et al, 2017
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Challenge of the Problem

• Consider a biconvex objective function

f(x, y) = [x, y]

[
1 2
2 1

] [
x
y

]

• Variable Coupling

• Block-wise: convex
• Whole problem: nonconvex !
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Adding Random Noise

• Initialize iterates at (0, 0)

A-GD A-GD + random noise
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Perturbed Gradient Descent

For t = 1, . . . ,

Step 1: Gradient descent

Step 2: If the size of gradient is small (near saddle points)

Step 3: If no decrease after perturbation over tth iterations

return

Add perturbation (extract negative curvature)

• Perturbed gradient descent [Jin, et al 2017]
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Perturbed Alternating Gradient Descent

Input: z(1), η, r, gth, fth, tth

Let z(t) =

[
x(t)

y(t)

]

For t = 1, . . . ,

Update x(t+1) by A-GD

If ‖∇xf(x
(t),y(t))‖2 + ‖∇yf(x

(t+1),y(t))‖2 ≤ g2th
and t− tpert > tth

EndIf

If t− tpert = tth and f(z(t))− f(z̃(tpert)) > −fth
return z̃(tpert)

EndIf

Add random perturbation to z(t)

Update x(t+1) by A-GD

Thresholds:
• gth: gradient size
• fth: objective value
• tth: number of iteration

Update y(t+1) by A-GD
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Perturbed Alternating Gradient Descent

z̃(t) ← z(t) and tpert ← t

z(t) = z̃(t) + ξ(t), random noise ξ(t) follows uniform
distribution in the interval [0, r]

• Add perturbation

• tth: the minimum number of iterations between
adding two perturbations
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Main Assumptions

A1. Function f (x): smooth and has Lipschitz continuous gradient:

‖∇f (x)−∇f (x′)‖ ≤L‖x− x′‖, ∀x,x′

A2. Function f (x): smooth and has block-wise Lipschitz continuous
gradient:

‖∇xf (x,y)−∇xf (x′,y)‖ ≤Lx‖x− x′‖, ∀x,x′

‖∇yf (x,y)−∇yf (x,y′)‖ ≤Ly‖y − y′‖, ∀y,y′.
Further, let Lmax := max{Lx, Ly} ≤ L.

A3. Function f (x) has Lipschitz continuous Hessian

‖∇2f (x)−∇2f (x′)‖ ≤ ρ‖x− x′‖, ∀ x,x′
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Convergence Rate

Theorem 1. Under assumptions [A1]-[A3], when step-size η ≤ 1/Lmax,
with high probability the iterates generated by PA-GD converge to an
ε-SOSP (x,y) satisfying

‖∇f (x,y)‖ ≤ ε, and λmin(∇2f (x,y)) ≥ −√ρε
in the following number of iterations:

Õ
(

1

ε2

)
(4)

where Õ hides factor polylog(d).
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Convergence Analysis is Challenging (One Block)

• The recursion of gradient descent (Mean Value Theorem):

x(t+1) = x(t) − η∇xf (x(t)) (5)

= x(t) − η∇xf (0)− η

(∫ 1

0
∇2f (θx(t))dθ

)
x(t) (6)

•W.L.O.G set x(1) = 0

where θ ∈ [0, 1]
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Convergence Analysis is Challenging (Two Blocks)

• The recursion of A-GD (Mean Value Theorem):

z(t+1) =

[
x(t+1)

y(t+1)

]
=

[
x(t)

y(t)

]
− η

[
∇xf (x(t),y(t))

∇yf (x(t+1),y(t))

]
(7)

= z(t) − η∇f (0)− η
∫ 1

0
H

(t)
l dθz

(t+1) − η
∫ 1

0
H

(t)
u dθz

(t) (8)

• Recall: z(t) :=

[
x(t)

y(t)

]
and W.L.O.G set z(1) = 0

where

θ ∈ [0, 1]

H
(t)
l :=

 0 0

∇2
xyf (θx(t+1), θy(t)) 0


H

(t)
u :=

∇2
xxf (θx(t), θy(t)) ∇2

xyf (θx(t), θy(t))

0 ∇2
yyf (θx(t+1), θy(t))

 .
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Idea of Proof

• Let z∗ be a strict saddle point, H = ∇2f (z∗) and z(1) = 0.

• The dynamic of the perturbed gradient descent iterates:

• The dynamic of the PA-GD iterates:

z(t+1) = (I− ηH)z(t) − η∆(t)z(t) − η∇f (0) (9)

z(t+1) = M−1Tz(t) − ηM−1∆
(t)
u z(t) − ηM−1∆

(t)
l z(t+1) (10)

M := I + ηHl, T := I− ηHu

Hu =

[
∇2

xxf(z
∗) ∇2

xyf(z
∗)

0 ∇2
yyf(z

∗)

]
Hl =

[
0 0

∇2
yxf(z

∗) 0

]
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Convergence Analysis

Lemma 1. Under assumptions [A1]–[A3], let H := ∇2f(z∗)
denote the Hessian matrix at an ε-SOSP z where
λmin(H) ≤ −γ and γ > 0. We have

λmax(M
−1T) > 1 +

ηγ

1 + L/Lmax
(11)
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Same Convergence Rate as GD and A-GD

Remark 1 Under assumptions [A1]-[A3], when the step-size is small
enough, with high probability the iterates generated by gradient descent
converge to an ε-FOSP x satisfying

‖∇f (x,y)‖ ≤ ε

in the following number of iterations:

O
(

1

ε2

)
.

Remark 2 Comparison between PA-GD and GD (A-GD)
- PA-GD has the same theoretical convergence rate as GD and A-GD up to

some logarithmic factor.
- PA-GD can converge to SOSPs with provable convergence guarantee
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Numerical Results: Two-layer Linear Neural Network

• Convergence comparison among GD, PGD and PA-GD for the two-layer
linear neural network, where ε = 10−10, gth = ε/10, tth = 10/ε1/2,
r = ε/10.

• Ŷ and X̂ are randomly generated with dimension
n = 100,m = 40, k = 20, l = 20 and follow Gaussian distribution CN (0, 1)

A two-layer linear neural network:

minimize
U∈Rn×k,V∈Rm×k

l∑
i=1

‖ŷi −UVT x̂i‖22 = ‖Ŷ −UVTX̂‖2F , (12)

• Randomly initialize the algorithms around the origin

X̂ := [x̂1, . . . , x̂k] ∈ Rm×l: data matrix

Ŷ := [ŷ1, . . . , ŷk] ∈ Rn×l: label matrix
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Numerical Results: Two-layer Linear Neural Network

•Different step-sizes are used to show the best GD can achieve.

Gradient Descent:

decrease
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Numerical Results: Two-layer Linear Neural Network

Perturbed Gradient Descent:

• The same size-sizes used in PGD
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Numerical Results: Two-layer Linear Neural Network

Perturbed Alternating Gradient Descent:

• The same size-sizes used in PA-GD
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Numerical Results: Matrix Factorization

• Convergence comparison among GD, PGD and PA-GD for asymmetric
matrix factorization, where ε = 10−10, gth = ε/10, tth = 10/ε1/2, r = ε/10.

• Ground truth: randomly generated matrix M∗ = U∗(V∗)T with
dimension n = 200,m = 20, k = 10

Consider the matrix factorization problem as the following [Zhu, et al.’ 17]:

minimize
X∈Rn×k,Y∈Rm×k

1

2
‖XYT −M∗‖2F +

µ

4
‖XTX−YTY‖2F

• Randomly initialize the algorithms around the origin

where µ > 0.
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Numerical Results: Matrix Factorization

Gradient Descent:

decrease

•Different step-sizes are used to show the best GD can achieve.



36

Numerical Results: Matrix Factorization

Perturbed Gradient Descent:

• The same size-sizes used in PGD
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Numerical Results: Matrix Factorization

Perturbed Alternating Gradient Descent:

• The same size-sizes used in PA-GD
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Conclusion, Ongoing Work and Open Problems

Conclusion:
- We consider block structured nonconvex problems:

minimize
x,y

f(x,y)

- Convergence rate of PA-GD to SOSPs

Ongoing work:
- We consider nonconvex optimization problems with general

linear inequality constraints
- Convergence rate of algorithms to SOSPs

Open Problems:
- Convergence rate of multiple blocks of coordinate descent

algorithms (both unconstrained and constrained cases)
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Thank You!


