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Log-Odds & Adversarial Examples



Log-Odds & Adversarial Examples

Adversarial examples cause atypically large feature space 
perturbations along the weight-difference direction
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 Adversarial examples are embedded in a cone-like structure
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Adversarial Cone

Noise as a probing instrument 
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The robustness properties of                     are different 
dependent on whether   or 

Main Idea: Log-Odds Robustness

          tends to have a characteristic direction if  
 whereas it tends not to have a specific direction if 



Main Idea: Log-Odds Robustness

natural adversarial

Noise can partially undo effect of adversarial perturbation 
and directionally revert log-odds towards the true class y*



Statistical Test & Corrected Classification

We propose to use noise-perturbed pairwise log-odds

to test whether      classified as     should be thought of as
a manipulated example of true class    :

    adversarial if

Corrected classification :



Detection Rates & Corrected Classification

● Our statistical test detects nearly all adversarial examples with FPR ~1%

● Our correction method reclassifies almost all adversarial examples successfully

● Drop in performance on clean samples is negligible



Detection Rates & Corrected Classification

Detection rate increases with increasing attack strength

Corrected classification manages to compensate for decay 
in uncorrected accuracy due to increase in attack strength

attack strength  ε



Defending against Defense-Aware Attacks

●  Attacker has full knowledge of the defense :

 perturbations that work in expectation under noise source used for detection

  Detection rates and corrected accuracies remain remarkably high
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The approaches most related to our work are those that detect whether or not the input has 
been perturbed, either by detecting characteristic regularities in the adversarial perturbations 
themselves or in the network activations they induce. 
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