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Bad news: adversarial examples are here to stay :)
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Adversarial attacks are a 'butterfly effect’ on data manifold

(] : Measurable function h: X — Y
L] : B(h, k) = {x € X | h(x) # k}, h = classifier
] . B(h, k) :={x € X | dist(x, B(h, k)) < e}

B(h, k)*
B(h, k)

merr(hlk) := Pxx(B(h,k)) >0 if his on class k.
m Consequence is that acc.(hlk) \, 0 expo. fast as function of .
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Isoperimetry in general metric spaces

m X = (X,d), uis probability measure on X, B is Borel subset

n means that:
u(B) >1— e 228l ve > p

m Current works use
elementary GIPI, where X = (RP, Ly), and p = 7p.

m Arguments not powerful enough for more general geometry!
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Talagrand transportation-cost inequality

The T,(c) property

Given ¢ > 0, a distribution p on X is said to satisfy Ta(c) if for
every distribution v on X with v < u, one has

Wa(v, 1) < v/2eKL(v]|), (1)
where KL(v|| 1) := [, log(dv/dp)dp, entropy of v relative to f.
mT2(c) = GIPI(c) = concentration
m Satisfied by a variety of distributions p

m Links relative entropy to optimal transport
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Generalized No Free Lunch Theorem for geodesic distance

Theorem (Generalized “No Free Lunch” [Dohmatob '18])

Suppose that conditional distribution P\ has the Ty(o%)
property. Given a classifier h : X — Y such that err(h|k) > 0,
define e(h|k) := ox+/2log(1/ err(h|k)). Then we have the
following bounds:

(A) : ife > e(hlk), then

—é(é‘—fﬁ(h\k))2

accc(hlk) <e
(B)

d(hlk) < v (V/iog(1/ err(hlK)) + v/7/2) (3)
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Generalized No Free Lunch Theorem for ¢, distances

Corollary (Generalized NFLT for /., attacks [Dohmatob '18])

In particular, for the ¢, threat model, we have the following
bounds:
(B1) s fe > 5(h|k)/\f, then
== h|k
e < = 2(6 e(h| )/f) (4)
(B2) o
d(hlk) < Tk <\/Iog 1/err(hlk)) + \/77/2> (5)
f
. to {oo-perturbations of size O(1/,/p).

m Result is largely independent of classifier!
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Special cases of our results

m Log-concave distribs dPx |, e~ () dx satisfying Emefy-Bakry
curvature condition: Hessy(vk) + Ricx(X) = (1/02)1p.

@ e.g Gaussians (considered in )
m Perturbed log-concave distribs (via Holley-Shroock Theorem)

m The uniform measure on compact Riemannian manifolds of
positive Ricci curvature, e.g “adversarial spheres” (considered in
), tori, or any compact Lie group.

m Pushforward via a Lipschitz function f, of a distribution in
To(0?). Indeed, take 54 = ||f||Lipok- E.g

m Tensor product p1 @ p12 ® ... ® pp of distributions having Ta(c¢)
also has T(c¢).

mEtc., etc.
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Special case: “Adversarial spheres” [Gilmer '18]

mY ~ Bern(1/2,{£}),

m X|k ~ uniform(S}, ), where
k
R+ > R_>0.

IS,R‘,k is a compact Riemannian manifold
with constant Ricci curvature (p — 1)R, 2.

m Thus Py, satisfies To(RZ/(p — 1)).
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Special case: “Adversarial spheres” [Gilmer '18]

mY ~ Bern(1/2,{£}),

m X|k ~ uniform(S}, ), where
k
R+ > R_>0.

IS,R‘,k is a compact Riemannian manifold
with constant Ricci curvature (p — 1)R, 2.

m Thus Py, satisfies To(RZ/(p — 1)).

R
. Ex[dgeo(X, B(h, k))] < \/%(ﬁ log(1/err(h[k)) + \/7/2)
%CD (acc(h|k))

m Same bounds obtained in “manually”
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Special case: Hypercube [0,1]? [Shafahi 18]

Gaussian uniform on [0, 1]

= U([0, 1]) = CDF(Gaussian) := [*__~y(x)dx, a J%?—Lipschitz map

m Therefore U([0, 1]) has concentration property with ¢ = 27.
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Simulated data |[Tsipras '18] “noisy features” dataset

mY ~ Bern({£1}), X|Y ~ N(Yn,1)*P, with p = 1000 where 7 is
an SNR parameter which controls the difficulty of the problem.

— standard acc(h) «=@= adversarial acc.(h)
= = 1 —acc(h) === predicted bound

SNR (n) = 3 SNR (n) = 2_

1.0

m Phase-transition occurs as predicted by our theorems
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Summary of contributions

mWe have shown that on a very broad class of data distributions,
any classifier with even a bit of accuracy is vulnerable to
adversarial attacks

mWe use powerful tools from geometric probability theory to
generalize recent impossibility results on adversarial robustness

m Our predictions are not incompatible with current research
endeavors being investing in designing defenses against adversarial
attacks.

@ It simply says there is a sharp and definitive limit to the
amount of robustness that can be guaranteed

m Full manuscript:
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Questions ? (come to
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