POPQORN: Quantifying Robustness of Recurrent Neural Networks

Ching-Yun Ko *^, Zhaoyang Lyu *, Tsui-Wei Weng, Luca Daniel, Ngai Wong, Dahua Lin

* Equal Contribution ^ Presenter

* arXiv: https://arxiv.org/abs/1905.07387

★ github: https://github.com/ZhaoyangLyu/POPQORN

A joint research by

Should technology be banned?

Facebook translates 'good morning' into 'attack them', leading to arrest.

Google Translate got a Mexican native arrested and redeemed.

San Francisco banned facial-recognition technology.

Concerns are rooted not just in a long national history of racially-biased state surveillance, but in the potential inaccuracy of facial recognition technology.

To justify the use of neural networks, the first step is to realize **neural networks are fragile**.

Our goal is to certify bounds around an input such that the top-1 classification result is consistent within the balls.

I.e. we want to provide a certified lower bound of the minimum adversarial distortion

Evaluating RNN robustness

Method	Application	Architecture	Certificate	
FGSM (Papernot et al., 2016)	NLP	LP LSTM		
(Gong & Poellabauer, 2017)	Speech	WaveRNN (RNN/ LSTM)	X	
Houdini (Ciss´e et al., 2017)	Speech	DeepSpeech-2 (LSTM)	×	
(Jia & Liang, 2017)	NLP	LSTM	X	
(Zhao et al., 2018)	NLP	LSTM	×	
(Ebrahimi et al., 2018)	NLP	LSTM	×	
C&W (Carlini & Wagner, 2018)	Speech	DeepSpeech (LSTM)	×	
Seq2Sick (Cheng et al., 2018)	NLP	Seq2seq(LSTM)	×	
CLEVER (Weng et al., 2018b)	CV/ NLP/ Speech RNN/LSTM/GRU		×	
POPQORN (This work)	CV/ NLP/ Speech	RNN/LSTM/GRU	✓	

POPQORN provides safeguarded lower bounds!

Safeguarded lower bounds

Networ	k arc	hitectures
		IIICCCAICS

Certification algorithms

MLP + ReLU activation

Fast-Lin[1], DeepZ[2], Neurify[3]

MLP + general activation

CROWN [4], DeepPoly[5]

CNN (pooling, resnet)

CNN-Cert [6]

RNN, LSTM, GRU

POPQORN (This work)

Applications: Video streams, Texts, Audio...

- [1] Weng etal, "Toward Fast Computation of Certified Robustness for ReLU Networks", ICML'18
- [2] Singh etal, "Fast and Effective Robustness Certification", NeurIPS'18
- [3] Wang etal, "Efficient Formal Safety Analysis of Neural Networks", NeurIPS'18
- [4] Zhang etal, "Efficient Neural Network Robustness Certification with General Activation Functions", NeurIPS'18
- [5] Singh etal, "Fast and effective robustness certification", NeurIPS'18
- [6] Boopathy etal, "CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks", AAAI'19

From MLP/CNN to

General activations: ReLU, tanh, sigmoid, etc

$$a^{(k)} = \sigma(W^{(k)}a^{(k-1)} + b^k)$$

LSTM/ GRU

Coupled nonlinearity:

cross-nonlinearity

Input gate:
$$\mathbf{i}^{(k)} = \sigma(\mathbf{W}^{ix}\mathbf{x}^{(k)} + \mathbf{W}^{ia}\mathbf{a}^{(k-1)} + \mathbf{b}^{i});$$

Forget gate:
$$\mathbf{f}^{(k)} = \sigma(\mathbf{W}^{fx}\mathbf{x}^{(k)} + \mathbf{W}^{fa}\mathbf{a}^{(k-1)} + \mathbf{b}^f);$$

Cell gate:
$$\mathbf{g}^{(k)} = \tanh(\mathbf{W}^{gx}\mathbf{x}^{(k)} + \mathbf{W}^{ga}\mathbf{a}^{(k-1)} + \mathbf{b}^g);$$

Output gate:
$$\mathbf{o}^{(k)} = \sigma(\mathbf{W}^{ox}\mathbf{x}^{(k)} + \mathbf{W}^{oa}\mathbf{a}^{(k-1)} + \mathbf{b}^{o});$$

Cell state:
$$\mathbf{c}^{(k)} = \mathbf{f}^{(k)} \odot \mathbf{c}^{(k-1)} + \mathbf{i}^{(k)} \odot \mathbf{g}^{(k)};$$

Hidden state:
$$\mathbf{a}^{(k)} = \mathbf{o}^{(k)} \odot \tanh(\mathbf{c}^{(k)})$$
.

Tackling the "cross-nonlinearity"

Use 2D planes to bound the "cross-nonlinearity" specifically in LSTMs/ GRUs.

Basic ideas

- 1. Compute the lower and upper bounds of the output units given a perturbed input sequence $X + \delta$, where $||\delta||_p \le \epsilon$.
- 2. If the lower bound of the true label output unit γ_i^L is <u>larger than</u> the upper bounds of all other output units $\gamma_j^U(j \neq i)$, we can certify that the classification result won't change within this l_p ball.

Theoretical Results

We can write out the lower and upper bounds of output units as functions of radius ϵ .

 $(X + \delta)$, where $||\delta||_p \le \epsilon$

Certified robustness bounds for various RNNs

Networks	$\gamma_j^L \le F_j \le \gamma_j^U$	Closed-form formulas		
Vanilla RNN	Upper bounds γ_j^U			
	Lower bound γ_j^L			
LSTM	Upper bounds γ_j^U	$ \tilde{\mathbf{W}}_{U,j,:}^{a(1)} \mathbf{a}^{(0)} + \mathbf{\Lambda}_{\Delta,j,:}^{fc(1)} \mathbf{c}^{(0)} + \sum_{k=1}^{m} \epsilon \ \tilde{\mathbf{W}}_{U,j,:}^{x(k)}\ _{q} + \sum_{k=1}^{m} \tilde{\mathbf{W}}_{U,j,:}^{x(k)} \mathbf{x}_{0}^{(k)} + \sum_{k=1}^{m} \tilde{\mathbf{b}}_{U,j}^{(k)} + \mathbf{b}_{j}^{F} $		
	Lower bound γ_j^L	$ \tilde{\mathbf{W}}_{L,j,:}^{a(1)} \mathbf{a}^{(0)} + \mathbf{\Omega}_{\Theta,j,:}^{fc(1)} \mathbf{c}^{(0)} - \sum_{k=1}^{m} \epsilon \ \tilde{\mathbf{W}}_{L,j,:}^{x(k)}\ _{q} + \sum_{k=1}^{m} \tilde{\mathbf{W}}_{L,j,:}^{x(k)} \mathbf{x}_{0}^{(k)} + \sum_{k=1}^{m} \tilde{\mathbf{b}}_{L,j}^{(k)} + \mathbf{b}_{j}^{F} $		
GRU	Upper bounds γ_j^U	$\tilde{\mathbf{W}}_{U,j,:}^{a(1)} \mathbf{a}^{(0)} + \sum_{k=1}^{m} \epsilon \ \tilde{\mathbf{W}}_{U,j,:}^{x(k)}\ _{q} + \sum_{k=1}^{m} \tilde{\mathbf{W}}_{U,j,:}^{x(k)} \mathbf{x}_{0}^{(k)} + \sum_{k=1}^{m} \tilde{\mathbf{b}}_{U,j}^{(k)} + \mathbf{b}_{j}^{F}$		
	Lower bound γ_j^L	$\ \tilde{\mathbf{W}}_{L,j,:}^{a(1)}\mathbf{a}^{(0)} - \sum_{k=1}^{m} \epsilon \ \tilde{\mathbf{W}}_{L,j,:}^{x(k)}\ _{q} + \sum_{k=1}^{m} \tilde{\mathbf{W}}_{L,j,:}^{x(k)}\mathbf{x}_{0}^{(k)} + \sum_{k=1}^{m} \tilde{\mathbf{b}}_{L,j}^{(k)} + \mathbf{b}_{j}^{F}$		

POPQORN: Robustness Quantification Algorithm

Steps in computing bounds for recurrent neural networks.

Experiment 1: Sequence MNIST

We compute the untargeted POPQORN bound on each time step, and the stroke with minimal bounds are the most **sensitive** ones.

- The starting point of one's stroke is **not** important
- Points in the back can tolerate larger perturbations

digit "1"

digit "4"

Experiment 2: Question Classification

We compute the untargeted POPQORN bound on one single input frame, and call the words with minimal bounds sensitive words

``ENTY" (entity), ``LOC" (location)

```
Example What is the <u>name</u> of <u>Roy Roger</u> 's dog ?

ENTY 0.34 0.50 0.53 <u>0.27</u> 0.39 <u>0.19</u> <u>0.32</u> 1.02 0.67 0.93
```

```
Example What is the fourth highest mountain in the world ?

LOC 0.47 0.75 0.95 0.67 0.48 0.55 1.19 1.11 0.85 0.91
```

Experiment 3: News Title Classification

Exampl 3	<u>journalists</u>	<u>kidnapped</u>	in	<u>afghanistan</u>	are		
World 0.45	<u>0.43</u>	<u>0.42</u>	0.73	<u>0.39</u>	0.65	0.60	0.55

Conclusions

POPQORN has three important advantages:

1) **Novel** - it is a general and the first work to provide a robustness evaluation for RNNs with robustness guarantees.

2) **Effective** - it can handle complicated LSTMs and GRUs with challenging coupled nonlinearities.

3) **Versatile** - it can be widely applied in computer vision, natural language processing, and speech recognition.

POPQORN: Quantifying Robustness of Recurrent Neural Networks

★ poster: Tue Jun 11 @ Pacific Ballroom #67

arXiv: https://arxiv.org/abs/1905.07387

★ github: https://github.com/ZhaoyangLyu/POPQORN

Follow our project!

