Improving Adversarial Robustness via Promoting Ensemble Diversity

Tianyu Pang, Kun Xu, Chao Du, Ning Chen and Jun Zhu

Department of Computer Science and Technology Tsinghua University

ICML | 2019

Adversarial Examples

From Dong et al. (CVPR 2018)

Single model defense:

e.g., adversarial training

Base Model

Enhanced Model

Ensemble model defense:

Member 1

Member 2 Member 3

Ensemble model defense:

Clean input

Ensemble model defense:

Adversarial input

Our Strategy

Training ensembles with diversity:

Member 1

Member 2

Member 3

Our Strategy

Training ensembles with diversity:

Adversarial input

Adaptive Diversity Promoting

 Promoting diversity on non-maximal predictions

ADP

Adaptive Diversity Promoting

 Promoting diversity on non-maximal predictions

correspond to all potentially wrong labels returned for the adversarial examples

Experiments

Adversarial transferability among individual members of ensembles

Experiments

Table 2. Classification accuracy (%) on adversarial examples. Ensemble models consist of three Resnet-20. For JSMA, the perturbation $\epsilon = 0.2$ on MNIST, and $\epsilon = 0.1$ on CIFAR-10. For EAD, the factor of L_1 -norm $\beta = 0.01$ on both datasets.

	MNIST				CIFAR-10			
Attacks	Para.	Baseline	$ADP_{2,0}$	$ADP_{2,0.5}$	Para.	Baseline	$ADP_{2,0}$	$ADP_{2,0.5}$
FGSM	$\epsilon = 0.1$	78.3	95.5	96.3	$\epsilon = 0.02$	36.5	57.4	61.7
	$\epsilon=0.2$	21.5	50.6	52.8	$\epsilon = 0.04$	19.4	41.9	46.2
BIM	$\epsilon = 0.1$	52.3	86.4	88.5	$\epsilon = 0.01$	18.5	44.0	46.6
	$\epsilon = 0.15$	12.2	69.5	73.6	$\epsilon=0.02$	6.1	28.2	31.0
PGD	$\epsilon=0.1$	50.7	73.4	82.8	$\epsilon = 0.01$	23.4	43.2	48.4
POD	$\epsilon = 0.15$	6.3	36.2	41.0	$\epsilon=0.02$	6.6	26.8	30.4
MIM	$\epsilon = 0.1$	58.3	89.7	92.0	$\epsilon = 0.01$	23.8	49.6	52.1
IVIIIVI	$\epsilon = 0.15$	16.1	73.3	77.5	$\epsilon=0.02$	7.4	32.3	35.9
JSMA	$\gamma = 0.3$	84.0	88.0	95.0	$\gamma = 0.05$	29.5	33.0	43.5
JONIA	$\gamma = 0.6$	74.0	85.0	91.0	$\gamma = 0.1$	27.5	32.0	37.0
	c = 0.1	91.6	95.9	97.3	c = 0.001	71.3	76.3	80.6
C&W	c = 1.0	30.6	75.0	78.1	c = 0.01	45.2	50.3	54.9
	c = 10.0	5.9	20.2	23.8	c = 0.1	18.8	19.2	25.6
EAD	c = 5.0	29.8	91.3	93.4	c = 1.0	17.5	64.5	67.3
	c = 10.0	7.3	87.4	89.5	c = 5.0	2.4	23.4	29.6

Classification accuracy (%) on adversarial examples

Experiments

Table 4. Classification accuracy (%): $AdvT_{FGSM}$ denotes adversarial training (AdvT) on FGSM, $AdvT_{PGD}$ denotes AdvT on PGD. $\epsilon = 0.04$ for FGSM; $\epsilon = 0.02$ for BIM, PGD and MIM.

	CIFAR-10				
Defense Methods	FGSM	BIM	PGD	MIM	
AdvT _{FGSM}	39.3	19.9	24.2	24.5	
$AdvT_{FGSM} + ADP_{2,0.5}$	56.1	25.7	26.7	30.6	
$AdvT_{PGD}$	43.2	27.8	32.8	32.7	
$AdvT_{PGD} + ADP_{2,0.5}$	52.8	34.0	36.2	38.8	

Classification accuracy (%) on adversarial examples

For more technical details and results, please come

Poster:

#64

Code:

https://github.com/P2333

