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Relation to Literature
[1,2] : “Under specific data assumptions, vulnerability Increases with input dimension.”

[1] Adversarial Spheres, Gilmer et al., ICLR Workshop 2018
[2] Are adversarial examples inevitable?, Shafahi et al., ICLR 2019
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Relation to Literature
[1,2] : “Under specific data assumptions, vulnerability Increases with input dimension.”
Here : “Under specific classifier assumptions, vulnerability Increases with input dimension.”

- No-free-lunch-like result:
“If data can be anything, then there exists datasets that make the problem arbitrarily  hard”

- Cannot apply to image-datasets, because humans are a non vulnerable classifiers for which 
higher dimension (higher resolution) helps.

- Hence the question:
not : what’s wrong with our data?
but : what’s wrong with our classifiers?
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[2] Are adversarial examples inevitable?, Shafahi et al., ICLR 2019
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Main Theorem

Theorem:
At initialization, using “He-initialization”, and for a very wide class of neural nets, 
adversarial damage increases like ! (!: input dimension).
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Main Theorem

Theorem:
At initialization, using “He-initialization”, and for a very wide class of neural nets, 
adversarial damage increases like ! (!: input dimension).

Remarks:
• Vulnerability is independent of the network topology (inside a wide class).
• Includes any succession of FC-, conv-, ReLU-, and subsampling layers at He-init.

Question:
Does it hold after training? → Experiments
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Experimental Setting

• Up-sample CIFAR-10 
• Yields 4 datasets with input sizes: 

(3x)32x32, 64x64, 128x128, 256x256.
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• Train a conv net for each input size
• Use same architecture for all networks

(up to convolution dilation and subsampling layers).
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Experimental Setting

• Up-sample CIFAR-10 
• Yields 4 datasets with input sizes: 

(3x)32x32, 64x64, 128x128, 256x256.

• Train a conv net for each input size
• Use same architecture for all networks

(up to convolution dilation and subsampling layers).

• Compare their adversarial vulnerability
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Experimental Results (after training)
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Experimental Results (after training)
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Experimental Results (after training)
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Adversarial damage ∝ "
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Conclusion

We show:
• Our networks are vulnerable by design:  vulnerability increases like !.
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Conclusion

We show:
• Our networks are vulnerable by design:  vulnerability increases like !.

• Proven theoretically at initialization
• Verified empirically after usual and robust training
• Theoretical result is independent of network topology

Suggests that:
• Current networks are not yet data-specific enough.
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Conclusion

We show:
• Our networks are vulnerable by design:  vulnerability increases like !.

• Proven theoretically at initialization
• Verified empirically after usual and robust training
• Theoretical result is independent of network topology

Suggests that:
• Current networks are not yet data-specific enough.
• Architectural tweaks may not be sufficient to solve adversarial vulnerability.

Carl-Johann SIMON-GABRIELFirst-order Adv Vul of NNs & Input Dim 



Thank you for listening!
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