

International Conference on Machine Learning (ICML 2019)

Convolutional Poisson Gamma Belief Network

Chaojie Wang Bo Chen Sucheng Xiao Mingyuan Zhou

Z National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi, China

Delta McCombs School of Business, The University of Texas at Austin, Austin, TX, USA

Motivation

Document Representation

- **□** Basic Lossless Representation
 - ➤ A sequence of one-hot vectors
 - ✓ Preserve all textual information
 - Extremely large and sparse matrices
 - Burdens of calculation and storage
 - Difficult to model directly

Document

"I love it don't $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ "I love it" $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ it $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ love $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ love $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Simplified

One-hot Sequence

☐ Simplified Lossy Representation

- **Bag-of-words**
 - ✓ Term-document frequency count matrix
 - X Lose word order
- Word embeddings
 - ✓ Project words to low-dimensional vectors
 - * Require additional large corpora

Challenge

Most basic representation

Our Contribution

Convolutional Poisson Factor Analysis

□ Generative model of CPFA

$$X_j = \mathbf{1}(M_j > 0), \ M_j \sim \operatorname{Pois}(\sum_{k=1}^K D_k * w_{jk}),$$

 $w_{jk} \sim \operatorname{Gam}(r_k, 1/c_j), \ D_k(:) \sim \operatorname{Dir}(\eta \mathbf{1}_{|V|F}),$

- ✓ Preserve word order information
- / Directly model sparse matrices
- Take advantages of the sparsity
- Support parallel computation
- ✓ Capture pharse-level topics

Probabilistic Convolutional Layer

Our Contribution

Convolutional Poisson Gamma Belief Network

□ Probabilistic Pooling Layer

$$w_{jks} \sim \text{Gam}(\Phi_{k:}^{(2)}\theta_{j}^{(2)}/S_{j}, 1/c_{j}^{(2)})$$

Equivalent

$$\theta_{jk}^{(1)} = \sum_{s=1}^{S_j} w_{jks} \sim \text{Gam}(\Phi_{k:}^{(2)} \theta_j^{(2)}, 1/c_j^{(2)})$$
$$w_{jk} = \pi_{jk} \theta_{jk}^{(1)}, \ \pi_{jk} \sim \text{Dir}(\Phi_{k:}^{(2)} \theta_j^{(2)}/S_j \mathbf{1}_{S_j})$$

☐ Generative model of CPGBN

$$\begin{split} \boldsymbol{\theta}_j^{(T)} &\sim \operatorname{Gam}(\boldsymbol{r}, 1/c_j^{(T+1)}), \\ &\dots, \\ \boldsymbol{\theta}_j^{(t)} &\sim \operatorname{Gam}(\boldsymbol{\Phi}^{(t+1)}\boldsymbol{\theta}_j^{(t+1)}, 1/c_j^{(t+1)}), \end{split}$$

$$\begin{aligned} & \theta_j^{(1)} \sim \text{Gam}(\Phi^{(2)}\theta_j^{(2)}, 1/c_j^{(2)}), \\ & w_{jk} = \pi_{jk}\theta_{jk}^{(1)}, \ \pi_{jk} \sim \text{Dir}(\Phi_{k:}^{(2)}\theta_j^{(2)}/S_j \mathbf{1}_{S_j}), \end{aligned}$$

$$M_j \sim \operatorname{Pois}ig(\sum_{k=1}^{K^{(1)}} D_k * w_{jk}ig),$$

- ✓ Transfer the messages from deeper layers
- ✓ Jointly Train all the other layers
- ✓ Deep extention can boost performance
- ✓ Hierachical pharse-level topic

Our Contribution

Hybrid MCMC/Variational Inference

☐ Convolutional inference network

□ Weibull Reparameterization

Weibull PDF:
$$P(x \mid k, \lambda) = \frac{k}{\lambda^k} x^{k-1} e^{(x/\lambda)^k}$$

 $x = \lambda (-\ln(1-\epsilon))^{1/k}, \ \epsilon \sim \text{Uniform}(0,1)$

Gamma PDF:
$$P(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

- ✓ Fast in out-of-sample prediction
- ✓ Parallel scalable inference
- ✓ Easy extension (e.g., modeling document labels)

Experiment

Phrase-level Topics Visualization

Table 3. Example phrases learned from TREC by CPGBN.

Kernel Index	Visualized Topic			Visualized Phrase
	1st Column	2nd Column	3rd Column	VISUAIIZEU FIII ase
192th Kernel	how cocktail stadium run	do many much long	you years miles degrees	how do you, how many years, how much degrees
80th Kernel	microsoft virtual answers.com softball	e-mail email ip brothers	addresses addresses floods score	microsoft e-mail address, microsoft email address, virtual ip address
177th Kernel	who willy bar hydrogen	created wrote fired are	maria angela snoopy caesar	who created snoopy, who fired caesar, who wrote angela
47th Kernel	dist all-time wheel saltpepter	how stock 1976 westview	far high tall exchange	dist how far, dist how high , dist how tall

Xidian University & UT-Austin

International Conference on Machine Learning (ICML2019)

Thank you!

Pacific Ballroom #237

Chaojie Wang Bo Chen Sucheng Xiao Mingyuan Zhou

Z National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi, China

Delta McCombs School of Business, The University of Texas at Austin, Austin, TX, USA

