Rao-Blackwellized Stochastic Gradients for Discrete Distributions

Runjing (Bryan) Liu

June 11, 2019

University of California, Berkeley

• We fit a discrete latent variable model.

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\operatorname*{argmin}_{\eta} \ \mathbb{E}_{q_{\eta}(z)} \left[f_{\eta}(z) \right]$$

where z is a discrete random variable with K categories.

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\operatorname*{argmin}_{\eta} \ \mathbb{E}_{q_{\eta}(z)} \left[f_{\eta}(z) \right]$$

where z is a discrete random variable with K categories.

• Two common approaches are :

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\underset{\eta}{\operatorname{argmin}} \ \mathbb{E}_{q_{\eta}(z)}\left[f_{\eta}(z)\right]$$

where z is a discrete random variable with K categories.

- Two common approaches are :
 - 1. Analytically integrate out z.

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\underset{\eta}{\operatorname{argmin}} \ \mathbb{E}_{q_{\eta}(z)} \left[f_{\eta}(z) \right]$$

where z is a discrete random variable with K categories.

- Two common approaches are :
 - 1. Analytically integrate out z.

Problem: *K* might be large.

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\underset{\eta}{\operatorname{argmin}} \ \mathbb{E}_{q_{\eta}(z)} \left[f_{\eta}(z) \right]$$

where z is a discrete random variable with K categories.

- Two common approaches are :
 - 1. Analytically integrate out z.
 - **Problem:** K might be large.
 - 2. Sample $z \sim q_{\eta}(z)$, and estimate the gradient with g(z).

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\underset{\eta}{\operatorname{argmin}} \ \mathbb{E}_{q_{\eta}(z)}\left[f_{\eta}(z)\right]$$

where z is a discrete random variable with K categories.

- Two common approaches are :
 - 1. Analytically integrate out z.

Problem: *K* might be large.

2. Sample $z \sim q_{\eta}(z)$, and estimate the gradient with g(z).

Problem: g(z) might have high variance.

- We fit a discrete latent variable model.
- Fitting such a model involves finding

$$\underset{\eta}{\operatorname{argmin}} \ \mathbb{E}_{q_{\eta}(z)}\left[f_{\eta}(z)\right]$$

where z is a discrete random variable with K categories.

- Two common approaches are :
 - 1. Analytically integrate out z.

Problem: K might be large.

2. Sample $z \sim q_{\eta}(z)$, and estimate the gradient with g(z).

Problem: g(z) might have high variance.

We propose a method that uses a combination of these two approaches to reduce the variance of any gradient estimator g(z).

Suppose g is an unbiased estimate of the gradient, so

$$abla_{\eta}\mathcal{L}(\eta) = \mathbb{E}_{q_{\eta}(z)}[g(z)] = \sum_{k=1}^{K} q_{\eta}(k)g(k)$$

Suppose g is an unbiased estimate of the gradient, so

$$abla_{\eta}\mathcal{L}(\eta) = \mathbb{E}_{q_{\eta}(z)}[g(z)] = \sum_{k=1}^{K} q_{\eta}(k)g(k)$$

Key observation: In many applications (e.g. variational Bayes), $q_{\eta}(z)$ is concentrated on only a few categories.

Suppose g is an unbiased estimate of the gradient, so

$$abla_{\eta}\mathcal{L}(\eta) = \mathbb{E}_{q_{\eta}(z)}[g(z)] = \sum_{k=1}^{K} q_{\eta}(k)g(k)$$

Key observation: In many applications (e.g. variational Bayes), $q_{\eta}(z)$ is concentrated on only a few categories.

Our idea: Let us analytically sum categories where $q_{\eta}(z)$ has high probability, and sample the remaining terms.

Suppose g is an unbiased estimate of the gradient, so

$$abla_{\eta}\mathcal{L}(\eta) = \mathbb{E}_{q_{\eta}(z)}[g(z)] = \sum_{k=1}^{K} q_{\eta}(k)g(k)$$

Key observation: In many applications (e.g. variational Bayes), $q_{\eta}(z)$ is concentrated on only a few categories.

Our idea: Let us analytically sum categories where $q_{\eta}(z)$ has high probability, and sample the remaining terms.

In math,

$$\sum_{k=1}^K q_{\eta}(k)g(k) = \underbrace{\sum_{\mathbf{z} \in \mathcal{C}_{\alpha}} q_{\eta}(\mathbf{z})g(\mathbf{z})}_{\text{analytically sum}} + \underbrace{(1 - q_{\eta}(\mathcal{C}_{\alpha}))}_{\text{small}} \underbrace{\mathbb{E}_{q_{\eta}(\mathbf{z})}[g(\mathbf{z})|\mathbf{z} \notin \mathcal{C}_{\alpha}]}_{\text{estimate by sampling}}$$

In math,

$$\sum_{k=1}^K q_{\eta}(k)g(k) = \underbrace{\sum_{\mathbf{z} \in \mathcal{C}_{\alpha}} q_{\eta}(\mathbf{z})g(\mathbf{z})}_{\text{analytically sum}} + \underbrace{(1 - q_{\eta}(\mathcal{C}_{\alpha}))}_{\text{small}} \underbrace{\mathbb{E}_{q_{\eta}(\mathbf{z})}[g(\mathbf{z})|\mathbf{z} \notin \mathcal{C}_{\alpha}]}_{\text{estimate by sampling}}$$

The variance reduction is guaranteed by representing our estimator as an instance of **Rao-Blackwellization**.

We train a **classifier** to classify the class label of MNIST digits and learn a **generative model** for MNIST digits conditional on the class label.

We train a **classifier** to classify the class label of MNIST digits and learn a **generative model** for MNIST digits conditional on the class label.

Our objective is to maximize the evidence lower bound (ELBO),

$$p_{\eta}(x) \geq \mathbb{E}_{q_{\eta}(z)}[\log p_{\eta}(x,z) - \log q_{\eta}(z)]$$

In this problem, the class label z has ten discrete categories.

We train a generative model for non-centered MNIST digits.

We train a generative model for non-centered MNIST digits.

To do so, we must first learn the location of the MNIST digit. There are 68×68 discrete categories.

We train a generative model for non-centered MNIST digits.

To do so, we must first learn the location of the MNIST digit. There are 68×68 discrete categories.

Thus, computing the exact sum is intractable!

Trajectory of the negative ELBO

Reconstruction of MNIST digits

Our paper:

Rao-Blackwellized Stochastic Gradients for Discrete Distributions https://arxiv.org/abs/1810.04777

Our code:

https://github.com/Runjing-Liu120/RaoBlackwellizedSGD

The collaboration:

Bryan Liu

Jeffrey Regier

Nilesh

Tripuraneni

Michael L Jordan

Jon McAuliffe