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where z is a discrete random variable with K categories.
e Two common approaches are :

1. Analytically integrate out z.
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2. Sample z ~ g,(z), and estimate the gradient with g(z).
Problem: g(z) might have high variance.

We propose a method that uses a combination of these two approaches
to reduce the variance of any gradient estimator g(z).
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The variance reduction is guaranteed by representing our estimator as an
instance of Rao-Blackwellization.
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Results: Generative semi-supervised classification

We train a classifier to classify the class label of MNIST digits and learn
a generative model for MNIST digits conditional on the class label.

Our objective is to maximize the evidence lower bound (ELBO),

pn(X) > I['Eqn(z)[log Pn(X, Z) - IOg qn(z)]

In this problem, the class label z has ten discrete categories.
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4 D

We train a generative model for non-centered MNIST digits.

To do so, we must first learn the location of the MNIST digit. There are
68 x 68 discrete categories.

Thus, computing the exact sum is intractable!
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