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Objective

• We fit a discrete latent variable model.

• Fitting such a model involves finding

argmin
η

Eqη(z) [fη(z)]

where z is a discrete random variable with K categories.

• Two common approaches are :

1. Analytically integrate out z .

Problem: K might be large.

2. Sample z ∼ qη(z), and estimate the gradient with g(z).

Problem: g(z) might have high variance.

We propose a method that uses a combination of these two approaches

to reduce the variance of any gradient estimator g(z).
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Our method

Suppose g is an unbiased estimate of the gradient, so

∇ηL(η) = Eqη(z)[g(z)] =
K∑

k=1

qη(k)g(k)

Key observation: In many applications (e.g. variational Bayes), qη(z)

is concentrated on only a few categories.

Our idea: Let us analytically sum categories where qη(z) has high

probability, and sample the remaining terms.
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Our method

In math,

K∑
k=1

qη(k)g(k) =
∑
z∈Cα

qη(z)g(z)︸ ︷︷ ︸
analytically sum

+ (1− qη(Cα))︸ ︷︷ ︸
small

Eqη(z)[g(z)|z /∈ Cα]︸ ︷︷ ︸
estimate by sampling

The variance reduction is guaranteed by representing our estimator as an

instance of Rao-Blackwellization.
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Results: Generative semi-supervised classification

We train a classifier to classify the class label of MNIST digits and learn

a generative model for MNIST digits conditional on the class label.

Our objective is to maximize the evidence lower bound (ELBO),

pη(x) ≥ Eqη(z)[log pη(x , z)− log qη(z)]

In this problem, the class label z has ten discrete categories.
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Results: moving MNIST

We train a generative model for non-centered MNIST digits.

To do so, we must first learn the location of the MNIST digit. There are

68× 68 discrete categories.

Thus, computing the exact sum is intractable!
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Results: moving MNIST

Trajectory of the negative ELBO
Reconstruction of MNIST digits
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