Large-Scale Sparse Kernel Canonical Correlation Analysis

Viivi Uurtio¹, Sahely Bhadra², and Juho Rousu¹

Department of Computer Science, Aalto University Helsinki Institute for Information Technology HIIT

² Indian Institute of Technology (IIT), Palakkad

June 11, 2019

 $\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$

 \rightarrow In standard CCA, we identify the related variables from ${\bf u}$ and ${\bf v}$

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

Scalability \mathbf{u} and \mathbf{v}

$$\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$$

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

 $\begin{array}{ccc} & & \text{Scalability} & \mathbf{u} \text{ and } \mathbf{v} \\ \text{Kernel CCA} & & & & & \\ \end{array}$

$$\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$$

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

Kernel CCA RF KCCA

$$\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$$

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

Kernel CCA RF KCCA KNOI

$$\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$$

- \rightarrow In standard CCA, we identify the related variables from \boldsymbol{u} and \boldsymbol{v}
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

Kernel CCA RF KCCA KNOI Deep CCA

$$\frac{\langle \mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v} \rangle}{||\mathbf{X}\mathbf{u}||_2||\mathbf{Y}\mathbf{v}||_2}$$

- \rightarrow In standard CCA, we identify the related variables from ${\bf u}$ and ${\bf v}$
- \rightarrow In the non-linear and/or large-scale variants, we cannot access the u and v

Kernel CCA RF KCCA KNOI Deep CCA SCCA-HSIC

Let
$$\mathbf{k}^x(\mathbf{u}) = (k^x(\mathbf{x}_i, \mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) = (k^y(\mathbf{y}_i, \mathbf{v}))_{i=1}^n$

Let
$$\mathbf{k}^x(\mathbf{u}) = (k^x(\mathbf{x}_i, \mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) = (k^y(\mathbf{y}_i, \mathbf{v}))_{i=1}^n$

$$\begin{aligned} \max_{\mathbf{u}, \mathbf{v}} \quad & \rho_{\mathsf{gradKCCA}}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2||\mathbf{k}^y(\mathbf{v})||_2} \\ & \text{s.t.} \quad ||\mathbf{u}||_{P_x} \le s_u \text{ and } ||\mathbf{v}||_{P_y} \le s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

$$\begin{aligned} \text{Let } \mathbf{k}^x(\mathbf{u}) &= (k^x(\mathbf{x}_i, \mathbf{u}))_{i=1}^n \text{ and } \mathbf{k}^y(\mathbf{v}) &= (k^y(\mathbf{y}_i, \mathbf{v}))_{i=1}^n \\ \max_{\mathbf{u}, \mathbf{v}} & \rho_{\text{gradKCCA}}(\mathbf{u}, \mathbf{v}) &= \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2||\mathbf{k}^y(\mathbf{v})||_2} \\ \text{s.t.} & ||\mathbf{u}||_{P_x} \leq s_u \text{ and } ||\mathbf{v}||_{P_y} \leq s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

Optimization steps for \mathbf{u} :

Let
$$\mathbf{k}^x(\mathbf{u}) ~=~ (k^x(\mathbf{x}_i,\mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) ~=~ (k^y(\mathbf{y}_i,\mathbf{v}))_{i=1}^n$

$$\begin{aligned} \max_{\mathbf{u}, \mathbf{v}} \quad & \rho_{\mathsf{gradKCCA}}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2 ||\mathbf{k}^y(\mathbf{v})||_2} \\ & \text{s.t.} \quad & ||\mathbf{u}||_{P_x} \le s_u \text{ and } ||\mathbf{v}||_{P_y} \le s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

Optimization steps for ${\bf u}$:

$$ightarrow$$
 Compute the gradient $abla_{
ho_{\mathbf{u}}} = rac{\partial
ho(\mathbf{u},\mathbf{v})}{\partial \mathbf{u}}$

Let
$$\mathbf{k}^x(\mathbf{u}) ~=~ (k^x(\mathbf{x}_i,\mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) ~=~ (k^y(\mathbf{y}_i,\mathbf{v}))_{i=1}^n$

$$\begin{aligned} \max_{\mathbf{u}, \mathbf{v}} \quad & \rho_{\mathsf{gradKCCA}}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2 ||\mathbf{k}^y(\mathbf{v})||_2} \\ & \text{s.t.} \quad & ||\mathbf{u}||_{P_x} \le s_u \text{ and } ||\mathbf{v}||_{P_y} \le s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

Optimization steps for u:

- ightarrow Compute the gradient $\nabla_{
 ho_{\mathbf{u}}} = \frac{\partial
 ho(\mathbf{u},\mathbf{v})}{\partial \mathbf{u}}$
- \rightarrow Step-size using line search: $\max_{\gamma} \rho(\mathbf{u} + \gamma \nabla_{\rho_{\mathbf{u}}})$

Let
$$\mathbf{k}^x(\mathbf{u}) ~=~ (k^x(\mathbf{x}_i,\mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) ~=~ (k^y(\mathbf{y}_i,\mathbf{v}))_{i=1}^n$

$$\begin{aligned} \max_{\mathbf{u}, \mathbf{v}} \quad & \rho_{\mathsf{gradKCCA}}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2 ||\mathbf{k}^y(\mathbf{v})||_2} \\ & \text{s.t.} \quad & ||\mathbf{u}||_{P_x} \le s_u \text{ and } ||\mathbf{v}||_{P_y} \le s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

Optimization steps for u:

- ightarrow Compute the gradient $abla_{
 ho_{f u}}=rac{\partial
 ho({f u},{f v})}{\partial{f u}}$
- \rightarrow Step-size using line search: $\max_{\gamma} \rho(\mathbf{u} + \gamma \nabla_{\rho_{\mathbf{u}}})$
- ightarrow Gradient step towards maximum: $\mathbf{u}_{grad} = \mathbf{u} + \gamma^* \nabla_{\rho_{\mathbf{u}}}$

Let
$$\mathbf{k}^x(\mathbf{u}) ~=~ (k^x(\mathbf{x}_i,\mathbf{u}))_{i=1}^n$$
 and $\mathbf{k}^y(\mathbf{v}) ~=~ (k^y(\mathbf{y}_i,\mathbf{v}))_{i=1}^n$

$$\begin{aligned} \max_{\mathbf{u}, \mathbf{v}} \quad & \rho_{\mathsf{gradKCCA}}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{k}^x(\mathbf{u})^\top \mathbf{k}^y(\mathbf{v})}{||\mathbf{k}^x(\mathbf{u})||_2 ||\mathbf{k}^y(\mathbf{v})||_2} \\ & \text{s.t.} \quad & ||\mathbf{u}||_{P_x} \leq s_u \text{ and } ||\mathbf{v}||_{P_y} \leq s_v \end{aligned}$$

Maximum through alternating projected gradient ascent

Optimization steps for u:

- ightarrow Compute the gradient $abla_{
 ho_{\mathbf{u}}} = rac{\partial
 ho(\mathbf{u},\mathbf{v})}{\partial \mathbf{u}}$
- ightarrow Step-size using line search: $\max_{\gamma} \rho(\mathbf{u} + \gamma \nabla_{\rho_{\mathbf{u}}})$
- ightarrow Gradient step towards maximum: $\mathbf{u}_{grad} = \mathbf{u} + \gamma^* \nabla_{\rho_{\mathbf{u}}}$
- ightarrow Project onto ℓ_P ball: $\mathbf{u} = \prod_{\|.\|_{P_x} \leq s_x} \mathbf{u}_{grad}$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かくで

MediaMill

$ ho_{ ext{TRAIN}}$	$ ho_{ ext{TEST}}$	Time (s)
0.666 ± 0.004	0.657 ± 0.007	8 ± 4
0.643 ± 0.005	0.633 ± 0.003	1280 ± 112
0.633 ± 0.001	0.626 ± 0.005	23 ± 9
0.652 ± 0.001	0.645 ± 0.003	218 ± 73
0.627 ± 0.004	0.625 ± 0.002	1804 ± 143
	0.666 ± 0.004 0.643 ± 0.005 0.633 ± 0.001 0.652 ± 0.001	$\begin{array}{cccc} 0.666 \pm 0.004 & 0.657 \pm 0.007 \\ 0.643 \pm 0.005 & 0.633 \pm 0.003 \\ 0.633 \pm 0.001 & 0.626 \pm 0.005 \\ 0.652 \pm 0.001 & 0.645 \pm 0.003 \end{array}$

Thanks and meet me at the poster!

Considerations can be sent to

MATLAB codes available on

https://github.com/aalto-ics-kepaco/gradKCCA

