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gradKCCA is a kernel matrix free method that efficiently
optimizes u and v

Let k”(u) = (K"(x;;u))izy and KV(v) = (K(yi, v))isg

T e
max Pgradkcca (U, v) = [k (u)|[2|[kY(V)]|]2

s.t. ||ullp, < sy and ||v\|py < s,

Maximum through alternating projected gradient ascent

Optimization steps for u:
— Compute the gradient V, = w
— Step-size using line search: max, p(u+~V,,)
— Gradient step towards maximum: ug,qq = u+7*V,,

— Project onto /p ball: u= HH~||P <s, Ugrad
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PTRAIN PrEsT TIME (S)
GRADKCCA 0.666 £ 0.004 0.657 £ 0.007 8+ 4

Deep CCA 0.643 £ 0.005  0.633 £ 0.003 1280 £ 112
RF KCCA 0.633 £ 0.001  0.626 £ 0.005 23+ 9
KNOI 0.652 + 0.001  0.645 £ 0.003 218 + 73
SCCA-HSIC  0.627 + 0.004  0.625 + 0.002 1804 + 143
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Thanks and meet me at the poster!

Considerations can be sent to

B¥  viivi.uurtio@aalto.fi

MATLAB codes available on
https://github.com/aalto-ics-kepaco/gradKCCA

Viivi Uurtio (Aalto, HIIT) ICML 2019

June 11, 2019

5/5


https://github.com/aalto-ics-kepaco/gradKCCA

