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Kernel Density Evaluation
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KDFp(q Zu, (xi, q)

Where is it used?
Non-parametric density estimation KDFp(q)
Kernel methods f(x) =Y. ajd(]|x — xil|)
Comparing point sets (distributions) with “Kernel Distance”

Evaluating at a single point requires O(n)
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Kernel Density Evaluation

P={x1,....,x,} CRY, k:RYxRY - R,, u>0, query point q
KDFp%(q Zu, (xi, q)

Where is it used?
Non-parametric density estimation KDFp(q)
Kernel methods f(x) = > c;jd(||x — xil|)
Comparing point sets (distributions) with “Kernel Distance”

How fast can we approximate KDF?
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Methods for Fast Kernel Evaluation

P c R?, e > 0= (1+e¢)-approx to i := KDFp(q) for any g € R?

Space Partitions
log(1/ 1) O)

m FMM
[Greengard,
Rokhlin'87]

m Dual-Tree [Lee,
Gray, Moore'06]

m FIG-Tree
[Moriaru et al.
NeurlPS'09]

Slow in high dim



Intro

00®@0000

c
.0
)
()
=
(L]
>
L
O
c
—
()
X
4
()]
Q]
LL
—
L
[%2]
S
(@)
J=
)
(D)
=

P c R?, e > 0= (1+e¢)-approx to i := KDFp(q) for any g € R?

Space Partitions

N\ RN

GRS
RN

N XARREKIN

QORI

N RORARS

img: computer.org

Slow in high dim



Wo Q_\J\V-‘.‘*D s
= S Sse
o oy
° S

Wa I *y > h,t
n ¥ 3 (] N\NC y )
m m ‘A .x % | Pe
5 — @ o o g
°
= N 72

A ) /
o= ) ¥

ST 4\
.“...“.!H 5o
() 00 CORKEN

0“"’..“.“.“.......:2
)

S-S

0 (X YA
¢

Q 0‘ A
o, 2

VAVA,

P c R?, e > 0= (1+e¢)-approx to i := KDFp(q) for any g € R?

Space Partitions
1/pe

c
.0
)
()
=
(L]
>
L
O
c
—
()
X
4
()]
Q]
LL
—
L
[%2]
S
(@)
J=
)
(D)
=

00®@0000

Intro

Linear in 1/p

img: computer.org

Slow in high dim



Intro

00®@0000

c
.0
)
()
=
(L]
>
L
O
c
—
()
X
4
()]
Q]
LL
—
L
[%2]
S
(@)
J=
)
(D)
=

P c R?, e > 0= (1+e¢)-approx to i := KDFp(q) for any g € R?

Hashing Random Sampling

Space Partitions

® %2
k. ®
P
Y 'S
 VAS a
Ve -
N 3 2\
m ) Ox =] | Po
— l' O »--
*
N oy
K, o.n.u«ﬂn«
L g
3 - B
R0 58
2 p0s 5 Qe
e 29w
. — p - . —
>~ c £E5 & & 25
S 8%5 ESEC
| | | |
2\
AN
O W
Q OO0OORMBEEZIN
—~ (X AR
= A=
=z (
& 0
a0
k)

Shrivastava '17]

img: computer.org

Linear in 1/p

Sub-linear in 1/

Slow in high dim



Intro

00®@0000

c
.0
)
()
=
(L]
>
L
O
c
—
()
X
4
()]
Q]
LL
—
L
[%2]
S
(@)
J=
)
(D)
=

P c R?, e > 0= (1+e¢)-approx to i := KDFp(q) for any g € R?

Hashing Random Sampling

Space Partitions

1/pe?

€?)

(1/vn

0]

log(1/ 1) )

LY e
&y )
®/ 2,
s N Nal y\v
B .x % | Do
1#} o P
o./ £3
A >
. 2
)

)
=
a3

g N

@ £
v 5

o O

O

cC (@

8 o

S .c

Qs
E

A Q \
XA N\
W N
OGO SRR

%

0000 AR
W 7
Q’"’"‘"’.’.. o:“o“

X

Space Partitions

img: computer.org

Linear in 1/p

Sub-linear in 1/

Slow in high dim



Distribution  over partitions h : RY — [M]

(%3]
c
.0
=t
-
—
(T
o
[0}
O
©
o
Vp)]
e
[0}
N
£
(@)
S
c
(T
o

000e000

Intro



Distribution  over partitions h : RY — [M]

(%3]
c
.0
=t
-
—
(T
o
[0}
O
©
o
Vp)]
e
[0}
N
£
(@)
S
c
(T
o



Intro
0000®00

Locality Sensitive Hashing

Partitions H such Ppy[h(x) = h(y)] = p(|lx — yII)
Euclidean LSH [Datar, Immorlika, Indyk, Mirrokni'04]

Concatenate k hashes
PE(lIx =yl




.y hm ~ H and evaluate on P

[Charikar, S. FOCS'17]

Estimators

h

-Based

m Preprocess: Sample hy, ..

Hashing

Intro
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Hashing-Based-Estimators

[Charikar, S. FOCS'17]

m Preprocess: Sample h1, ..., h,, ~ H and evaluate on P
m Query: H.(q) hash-bucket for g in table t

m Estimator: Sample random point X; from H:(g) and return:

_1R1 k(Xu9)
m;n (Xt q)/|He(q)l
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Hashing-Based-Estimators

[Charikar, S. FOCS'17]

m Preprocess: Sample hy, ..., h, ~ H and evaluate on P
m Query: H.(q) hash-bucket for g in table t

m Estimator: Sample random point X; from H:(g) and return:

_ 151l KXeq)
mgn (Xt a)/|He(q)l

How many samples m? which LSH?
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Hashing-Based-Estimators have Practical Limitations

For certain kernels HBE solves the kernel evaluation problem for
> 7 using O(1/,/ne?) samples and O(n/+/T€?) space.

Kernel LSH Overhead
a2

e~ =¥ Ball Carving [Andoni, Indyk'06]  eOllog3 (m)
e~ lx=l Euclidean [Datar et al'04] Ve
L Euclidean [Datar et al'04] 3t/2

1+ [x—yl3
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Hashing-Based-Estimators have Practical Limitations

For certain kernels HBE solves the kernel evaluation problem for
> T using 0(1/\//762) samples and O(n/\/7T€?) space.
Practical Limitations:

Super-linear Space = Not practical for massive datasets

Uses Adaptive procedure to estim. number of samples:
= large-constant + stringent requirements on hash functions.

52
Gaussian kernel Ball-Carving LSH very slow e©(log* ("))

Q: Practical HBE + preserve theoretical guarantees?
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Overcoming practical Limitations of HBE

[Charikar, S. FOCS'17] [This work ICML’19]

Practical Limitations: Resolve by:
super-linear space!

Adaptive procedure has
large constant overhead.

Gaussian Kernel
Ball-Carving LSH is slow.
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Overcoming practical Limitations of HBE

[Charikar, S. FOCS'17] [This work ICML’19]
Practical Limitations: Resolve by:
super-linear space! Sketching (sub-linear space)
Adaptive procedure has Improved Adaptive
large constant overhead. procedure + New Analysis
Gaussian Kernel Practical HBE for Gaussian
Ball-Carving LSH is slow. Kernel via Eulcidean LSH

[S.*, Rong*, Bailis, Charikar, Levis ICML’19]
First Practical and Provably Accurate Algorithm for
Gaussian Kernel in High Dimensions
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Worst-case bounds can be misleading

Worst-case bounds do not always reflect reality

Random Sampling

good: O(1) samples

bad: O(1/) samples

Nes,
Q} ‘\-“ ]

v X

{EON);

= query .

g\ 'O.b*
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Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?

No: worst-case insufficient to predict performance on a dataset.

[This work ICML’19]
Diagnostic tools to estimate dataset-specific performance even
without evaluating HBE
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Outline of the rest of the talk

Sketching
Diagnostic tools

Experimental evaluation
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How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

Random points:
= some buckets might have
0 points in sketch.

point from each bucket:
= might need a large
number of points

Idea: interpolate between uniform points vs uniform over buckets!

Solution: hashing+ non-uniform sampling
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample hy evaluate on P

S« 0.
for j=1,..., SKETCHSIZE:

m Sample bucket / prob. oc n;?

m Sample a random point J
from bucket i S+ SU{J}

m Weight it so that
E,[W,k(q, xs)] o< KDFp(q)

return (W, S)
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Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample hy evaluate on P
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m Approx. any density p > 7.

m Reduce space from
O(n//T) to O(1/v/73)
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bucket with > n - 7 points
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample hy evaluate on P

Theorem: O(1/7) points suffice.

m Approx. any density p > 7.

m Reduce space from
O(n//T) to O(1/v/73)

m Contains a point from any
bucket with > n - 7 points

Sub-linear space: e.g 7 = % we get n®/* — p3/*
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Variance of Unbiased Estimators

Unbiased estimators: Random Sampling, HBE

Metric of interest is average relative variance:

Viz(a)]

Eqwp [ ] x “Sample Complexity”
T LE[Z(q))?

Diagnostic Procedure
Sample a number T of random queries from P.
For each = upper bound Relative Variance

Average for each method of interest over T queries.

Estimate mean and bound Variance
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Bounding the variance

Variance is a “quadratic polynomial” of w; = k(gq, x;)

1 n
VIZI< 5 > Wy

ij=1

Random Sampling (RS)

E[k?(q, X)] = 2ZW
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Bounding the variance

Variance is a “quadratic polynomial” of w; = k(gq, x;)

1 n
VIZI< 5 > Wy

ij=1
Random Sampling (RS) HBE collision prob. p(x,y)
1 n
2 2
E[k2(g, X) :2ZW E[Z?] < — > w?Vj
ij=1 ij=1

p%(q,xi)
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Bounding the variance

Variance is a “quadratic polynomial” of w; = k(gq, x;)
1 n
ViZ] < Zl w? Vi
1=

Random Sampling (RS) HBE collision prob. p(x,y)

E[k*(q, X) :2ZW E[Z%] < 5 ZWVU

,J 1 7J 1

min{p(q,x;),r(q,x;)}
p?(q,x;)

Vij =

Evaluating variance naively requires O(n) or O(n?) per query
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Bounding the variance

Variance is a “quadratic polynomial” of w; = k(gq, x;)
1 n
ViZ] < Zl w? Vi
1=

Random Sampling (RS) HBE collision prob. p(x,y)

E[k*(q, X) :2ZW E[Z%] < 5 ZWVU

,J 1 7J 1

—_ min{p(g,x;),p(q,x;)}
Vij = P?(q,xi) ’

Q: Efficient alternative?
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Data-dependent Variance Bounds

Variance is a “quadratic polynomial” of w; = k(gq, x;)

1 n
VIZI< 5 > WYy
ij=1

Decompose in 4 sets
P For two sets Sy, Sp:

S4
S
: > WY
{. S, N i€Sp,jESy

Wi
< sup {—Vjtpepr
i€SpjE€Sy Wi

L (Hlder)

Diagnostic
bnd (g) terms
Evaluate on
— subsample Sg

Produced by
RS and Adapt.
Algorithm
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Algorithms for Kernel Evaluation

m Random Sampling (RS):
sensitive to range of kernel values (distances).

m Hashing-Based-Estimators (HBE):
sensitive to “correlations” (dense distant clusters)
[Charikar, S. FOCS'2017][This work ICML'2019]

m Fast Improved Gauss Transform (FIGTree):
sensitive to # “clusters” (directions) at certain distance
[Morariu,Srinivasan,Raykar, Duraiswami, Davis, NeurlPS'2009]

m Approximate Skeletonization via Treecodes (ASKIT)
sensitive to “medium” distance scale/size clusters
[March, Xiao, Biros, SIAM JSC 2015]

Compare performance on Real-world datasets
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

~
o

67.9
HBE

s RS
. ASKIT
EEN FigTree
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Average Query Time (ms)
S 8 8
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o

o

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

~
o

67.9
HBE

s RS
. ASKIT
EEN FigTree

-}
=}

[
o

43.0

N w B
o 1=} o

Average Query Time (ms)
S

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe

Diagnostic correctly (21/22) choses between RS and HBE
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

70 67.9
. HBE
€60 mmm RS
o mm ASKIT
E*| mmm FigTree
[ 9 43.0
> 40
-
]
=1
o 30
(]
D20
o
9]
Z 10

ol

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe
[ covertype

° °
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

7 HBE =
60{ WM RS

s ASKIT
1 FigTree L3.0

Average Query Time (ms)
S 8 8

=
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o

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe
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covertype “FTIMIT
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s ASKIT
1 FigTree L3.0

Average Query Time (ms)
S 8 8

=
o

o

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe
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covertype 2ETIMIT “'SVHN
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

70 HBE 67.9
601 I RS

m ASKIT
1 FigTree Lo

Average Query Time (ms)
S 8 8

=
o

o

TMY3 covertype census  TIMIT ALOI SVHN MSD GloVe

1

covertype “TIMIT “'SVHN “["GloVe
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Benchmark Instances

Synthetic Benchmarks:
Worst-case: no single geometric aspect can be exploited!

D-clusters: gauge impact of different geometric aspects.
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Worst-case Instances

Union of highly-clustered with uncorrelated points

(fixed ;2 = 103, dimension d € [10,500], 100K queries)

& Figlree > ASKIT  -O- RS HBE Inst d 5
nstance d =
E 100
o ‘ [ ]
£ 4
= 10~ L .'u.
> r ] U ®
3 B W 'y
e . [
= T u y ' A
> 102 o H ,
< ‘ i \ s 3
5 [ . e
b # dimensions 5°° *t - - "{ hd
“Worst-case” data sets ) ‘s - .
-
m HBE best _5

m ASKIT second best
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Instances with D clusters

Fix N = n- D = 500K, vary D € [1,10°]

—<¢ FigTree > ASKIT RS
R %
° 6
[
E 102 /P' ‘). .'
> ¢ ."'. °
@ 10™ ‘
>
o 24 ;‘ o
FigTree HBE RS 1 . @
10° 10! 102 10° 104 10°
# clusters -2 ‘. ®
b °
D-structured datasets: 4] LI Y
m D < V/N: space partitions -6

m D ~ N'%: Random Samp.
m 1< D< N: HBE
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Rehashing Kernel Evaluation in High Dimensions

Hashing-Based-Estimators:
made practical 4+ often state-of-the-art 4+ worst-case guarant.
data-dependent diagnostics: when to use & how to tune

“Rehashing” methodology

Open Source Implementation and Experiments

Sketch

b I : ° Config file
Lo - —

(https://github.com /kexinrong/rehashing)

Dataset Visualizaton

(deployment)

Diagnostics Visualization

Thank you!
psimin@stanford.edu


https://github.com/kexinrong/rehashing
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