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Regularization in Deep Learning

Two issues with today's deep learning models:
o Poor performance on small datasets

o Lack of robustness to adversarial perturbations
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Regularization in Deep Learning

Two issues with today's deep learning models:
o Poor performance on small datasets

o Lack of robustness to adversarial perturbations

Questions:

Qo Can legulal ization addless thiS.;

o What is a good choice of Q(f) for deep (convolutional) networks?
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Regularization with the RKHS Norm
Kernel methods: f(x) = (f, ®(x))x

o ®(x) captures useful properties of the data

o ||f]| controls model complexity and smoothness:

[F(<) = FWI < [IFlla - 19(x) = S (y) %
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Our work: view generic CNN f as an element of a RKHS H and regularize using ||fy||%
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Regularization with the RKHS Norm
Kernel methods: f(x) = (f, ®(x))x
o ®(x) captures useful properties of the data

o ||f]| controls model complexity and smoothness:

[FO) = FODI < [IFlla - [[90x) = @yl
Our work: view generic CNN f as an element of a RKHS H and regularize using ||fy||%
Kernels for deep convolutional architectures (Bietti and Mairal, 2019):
o [[®(x) = &(y)lln < [Ix =yl

o ||®(xr) — D(x)||x < C(7) for a small transformation x, of x
o CNNs fy with RelLUs are (approximately) in the RKHS with norm

153113, < w([WAllz, ..., [ WL]l2)-
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Approximating the RKHS norm

Our approach: use upper and lower bound approximations of ||f]|#
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Approximating the RKHS norm

Our approach: use upper and lower bound approximations of ||f]|#
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Approximating the RKHS norm

Our approach: use upper and lower bound approximations of ||f]|#
o Upper bound: constraint/penalty on spectral norms

o Lower bounds: use ||f|3; = sup,, <1 (f, t)n
— consider tractable subsets of the RKHS unit ball

Ifllg > sup (f,P(x+3J)—D(x))n (adversarial perturbations)
x[lolI<1
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Approximating the RKHS norm

Our approach: use upper and lower bound approximations of ||f]|#
o Upper bound: constraint/penalty on spectral norms

o Lower bounds: use ||f|3; = sup,, <1 (f, t)n
— consider tractable subsets of the RKHS unit ball

|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[l6lI<1

|fllg = sup f(x:)—f(x) (adversarial deformations)
x,C(7)<1
Iflls > sup [VF(x)]l> (gradient penalty)

o Best performance by combining upper + lower bound approaches
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More Perspectives and Experiments

Regularization approaches
o Unified view on various existing strategies, including links with robust optimization
Theoretical insights

o Guarantees on adversarial generalization with margin bounds

o Insights on regularization for training generative models
Experiments

o Improved performance on small data scenarios in vision and biological datasets
o Robustness benefits with large adversarial perturbations
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