Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations

Wu Lin (UBC)

June 11, 2019

Joint work with Mohammad Emtiyaz Khan (AIP, RIKEN) and Mark Schmidt (UBC)

Variational Inference (VI)

VI approximates the posterior $p(\mathbf{z}|\mathcal{D}) \approx q(\mathbf{z}|\lambda_z)$ by maximizing the evidence lower bound:

where $q(\mathbf{z})$ is a tractable distribution parametrized by λ_z .

ELBO Optimization

Block-box VI (BBVI):

$$\lambda_z \leftarrow \lambda_z + \beta \nabla_{\lambda_z} \mathcal{L}(\lambda_z)$$

Natural-gradient VI (NGVI):

natural gradient

$$\lambda_z \leftarrow \lambda_z + \beta \overline{\mathsf{F}_z(\lambda_z)^{-1}} \nabla_{\lambda_z} \mathcal{L}(\lambda_z)$$

where $\mathbf{F}_{z}(\lambda_{z})$ is the Fisher information matrix of $q(\mathbf{z}|\lambda_{z})$.

Advantages of NGVI:

▶ NGVI can be simple and fast when q is in the exponential family (e.g., Gaussian) (Khan and Lin, Al&Stats 2017).

NGVI for Exp-Family:
$$\lambda_z \leftarrow \lambda_z + \beta \nabla_{m_z} \mathcal{L}(\lambda_z)$$

because
$$\nabla_{m_z} \mathcal{L}(\lambda_z) = \mathbf{F}_z(\lambda_z)^{-1} \nabla_{\lambda_z} \mathcal{L}(\lambda_z)$$
.

Problem Formulation

Challenges of NGVI when q(z) is not in the exponential-family:

- ▶ Computing $\mathbf{F}_z(\lambda_z)^{-1}\nabla_{\lambda_z}\mathcal{L}(\lambda_z)$ could be complicated.
- $ightharpoonup \mathbf{F}_z(\lambda_z)$ can be singular.
- Often no simple update beyond exponential family.

Our goal: perform a simple NGVI update for more flexible variational approximations (e.g., skewness, multi-modality)

(b) Finite Mixture of Gaussians

This Work

Main Contribution: propose a new NGVI update for a class of mixture of exponential family distributions.

We consider the following mixture:

$$q(\mathbf{z}|\mathbf{\lambda}) = \int \underbrace{q(\mathbf{z}|\mathbf{w}, \mathbf{\lambda}_z)}_{ ext{exp-family}} \underbrace{q(\mathbf{w}|\mathbf{\lambda}_w)}_{ ext{exp-family}} d\mathbf{w}$$

We propose to use the (joint) Fisher matrix \mathbf{F}_{wz} of $q(\mathbf{w}, \mathbf{z}|\lambda)$ since:

$$abla_m \mathcal{L}(oldsymbol{\lambda}) = {\sf F}_{\sf wz}(oldsymbol{\lambda})^{-1}
abla_\lambda \mathcal{L}(oldsymbol{\lambda})$$

where \mathbf{m} is the proposed expectation parameter.

▶ Proposed NGVI update: $\lambda \leftarrow \lambda + \beta \nabla_m \mathcal{L}(\lambda)$

Proposed NGVI

Advantage of the proposed NGVI:

- ▶ Has the same cost as BBVI if computing $\nabla_m \mathcal{L}(\lambda)$ is easy.
- Is faster than BBVI.

Variational approximations:

- Finite mixture of exp-family distributions:
 Mixture of Gaussians (multi-modality)
 Birnbaum-Saunders distribution (non-Gaussian mixture)
- Gaussian compound distribution:
 Skew Gaussian (skewness)
 Normal inverse-Gaussian (heavy tails)

Summary & Poster Presentation

Conclusion:

a simple NGVI update for approximations outside the exp-family.

Poster Presentation:

► This work: Poster #217, Pacific Ballroom, Today, 6:30 PM

► New gradient estimators via Stein's lemma: "Stein's Lemma for the Reparameterization Trick with Exponential-family Mixtures", the workshop on Stein's method, Saturday