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Genomic Study (motivating example) 
- Goal: Understand relationship between 

genomic variation & disease outcome

- N=20,000 samples — D=500,000 SNPs

We present LR-GLM, a method with linear scaling in D 
and theoretical guarantees on quality

Bayesian Modeling & Inference 
- Coherent uncertainty quantification
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We rigorously show… 
- Rank of approximation defines a computational-statistical trade-off

- The approximation is conservative (overestimates uncertainty)

- For high-dimensional, correlated data, LR-GLM closely 

approximates the exact posterior up to 5X faster!

Evaluate by comparing exact means and uncertainties (slow) against 
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