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Introduction

Introduction

Langevin dynamics (LD) ⇐⇒ gradient flow on the Wasserstein space
of a Euclidean space [11].

Does a general MCMC dynamics have such an explanation?

In this work:

General MCMC dynamics ⇐⇒ fiber-Gradient Hamiltonian (fGH) flow
on the Wasserstein space of a fiber-Riemannian Poisson (fRP)
manifold.

“fGH flow = min-KL flow + const-KL flow” explains the behavior of
MCMCs.

The connection to particle-based variational inference (ParVI) inspires
new methods.
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MCMC Dynamics as Wasserstein Flows

First Reformulation

Describe a general MCMC dynamics targeting p [15]:

dx = V (x) dt+
√

2D(x) dBt(x),

V i(x) =
1

p(x)
∂j

(
p(x)

(
Dij(x) +Qij(x)

))
,

for some pos. semi-def. D and skew-symm. Q.

Lemma 1 (Equivalent deterministic MCMC dynamics)

dx = Wt(x)dt,

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Gradient flow of KLp on P(M) with Riemannian (M, g):

− gradP(M) KLp(q) = − gradM log(q/p) = gij(x) ∂j log(p(x)/q(x)).

(gij): symm. pos. def.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Definition 3 (Fiber-Riemannian manifold)

Fiber-Riemannian manifold: a fiber bundle with
a Riem. strc. gMy on each fiber My.

Fiber-gradient: union of grad. over fibers(
gradfib f(x)

)i
=g̃ij(x) ∂jf(x), 1 ≤ i, j ≤M,(

g̃ij(x)
)
M×M :=

(
0m×m 0m×n
0n×m

(
(gM$(x)

(z))ab
)
n×n

)
. (1)

On P̃(M):
(

gradfib KLp(q)(x)
)
M

=
(
g̃ij(x) ∂j log

(
q(x)/p(x)

))
M

.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

Consider a Poisson manifold (M, β) [8].

Lemma 2 (Hamiltonian flow of KL on P(M))

XKLp(q) = πq(Xlog(q/p)), where
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log(q(x)/p(x)).

XKLp conserves KLp on P(M) [1, 9].

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 6 / 11



MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Main Theorem

Theorem 5 (Equivalence between regular MCMC dynamics on RM and
fGH flows on P(M).)

We call (M, g̃, β) a fiber-Riemannian
Poisson (fRP) manifold, and define the
fiber-gradient Hamiltonian (fGH) flow on
P(M) as:

WKLp :=−π(gradfib KLp)−XKLp ,(
WKLp(q)

)i
=πq

(
(g̃ij + βij)∂j log(p/q)

)
.

Then:

Regular MCMC dynamics ⇐⇒ fGH flow with fRP M,
(D,Q) ⇐⇒ (g̃, β).
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Case Study

Type 1: D is non-singular (m = 0 in Eq. (1)).
fGH flow WKLp = −π(grad KLp)−XKLp ,

−π(grad KLp): minimizes KLp on P(M).
−XKLp

: conserves KLp on P(M), helps mixing/exploration.

LD [18] / SGLD [19], RLD [10] / SGRLD [17].

Type 2: D = 0 (n = 0 in Eq. (1)).

fGH flow WKLp = −XKLp conserves KLp on P(M).

Fragile against SG: no stablizing forces (i.e. (fiber-)gradient flows).

HMC [7, 16, 2], RHMC [10] / LagrMC [12] / GMC [3].

Type 3: D 6= 0 and D is singular (m,n ≥ 1 in Eq. (1)).
fGH flow WKLp = −π(gradfib KLp)−XKLp ,

−π(gradfib KLp): minimizes KLp(·|y)(q(·|y)) on each fiber P(My).
−XKLp

: conserves KLp on P(M), helps mixing/exploration.

Robust to SG (SG appears on each fiber).

SGHMC [5], SGRHMC [15]/SGGMC [13], SGNHT [6]/gSGNHT [13].
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Simulation as ParVIs

ParVI Simulation for SGHMC

Deterministic dynamics of SGHMC [5]:

By Lemma 1:
pSGHMC-det


dθ

dt
= Σ−1r,

dr

dt
= ∇θ log p(θ)− CΣ−1r − C∇r log q(r).

By Theorem 5:
pSGHMC-fGH


dθ

dt
= Σ−1r +∇r log q(r),

dr

dt
= ∇θlog p(θ)−CΣ−1r−C∇rlog q(r)−∇θlog q(θ).

Estimate ∇ log q using ParVI techniques [14], e.g. Blob [4].

Over SGHMC: particle-efficient.

Over ParVIs: more efficient dynamics than LD.
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Experiments

Synthetic Experiment
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Experiments

Latent Dirichlet Allocation (LDA)

0 200 400 600
iteration

1040

1060

1080

1100

1120

ho
ld

ou
t p

er
pl

ex
ity

Blob
SGHMC
pSGHMC-det
pSGHMC-fGH

(a) Learning curve (20 ptcls)
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(b) Particle efficiency (iter 600)

Figure: Performance on LDA with the ICML data set.
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