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Introduction

Introduction

e Langevin dynamics (LD) <= gradient flow on the Wasserstein space
of a Euclidean space [11].

@ Does a general MCMC dynamics have such an explanation?
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Introduction

e Langevin dynamics (LD) <= gradient flow on the Wasserstein space
of a Euclidean space [11].

@ Does a general MCMC dynamics have such an explanation?

In this work:

e General MCMC dynamics <= fiber-Gradient Hamiltonian (fGH) flow
on the Wasserstein space of a fiber-Riemannian Poisson (fRP)
manifold.

o "fGH flow = min-KL flow + const-KL flow” explains the behavior of
MCMCs.

@ The connection to particle-based variational inference (ParVI) inspires
new methods.
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MCMC Dynamics as Wasserstein Flows

First Reformulation

Describe a general MCMC dynamics targeting p [15]:
dz = V(z)dt + v/2D(x) dBy(z),
iy Lo ij ij
Vi) = 50 (p@) (DY (@) + QU()) ).

for some pos. semi-def. D and skew-symm. Q.
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MCMC Dynamics as Wasserstein Flows

First Reformulation

Describe a general MCMC dynamics targeting p [15]:
dz = V(z)dt + /2D(z) dBi(z),
. 1 g g
) = = 9. D ij
Vi) = 50 (p@) (DY @) + Q7)) ).
for some pos. semi-def. D and skew-symm. Q.

Lemma 1 (Equivalent deterministic MCMC dynamics)

dz = Wy(z)dt,
(W) (z) = DY (z) 8; log(p(z) /qr(z)) + QY (x) 9; log p(z) + 0;Q" ().
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Interpret MCMC Dynamics

(We)'(z) = DY () 9; log(p(x) /a:(x)) + Q" () 05 log p(x) + 0;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
Gradient flow of KL, on P(M) with Riemannian (M, g):
—gradp g KLy (g) = — grad v log(q/p) = g" (x) 9; log(p(x)/q(x)).
(g"): symm. pos. def.
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Interpret MCMC Dynamics

(W) (x) = DY () 9; log(p(x) /qr(x)) + Q¥ (x) 8; log p(a) + 0;QV ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

Definition 3 (Fiber-Riemannian manifold)

Fiber-Riemannian manifold: a fiber bundle with
a Riem. strc. gaq, on each fiber M,,.

o Fiber-gradient: union of grad. over fibers
(gradan f())" =g" (x) 9; f (x),

~ij . (Umxm Omoxn
(g (x))MxM T (Onxm ((ng(z)(’Z))ab)nxn> . (1)

e On P(M): (grada, KLy(q)(2)),, = (5 (x) 9;log (q()/p(x))) -
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /¢4 ()) + Q" () 9; log p(x) + 0;Q" (x).
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.
Consider a Poisson manifold (M, ) [8].

Lemma 2 (Hamiltonian flow of KL on P(M))

i

XKLp (Q) = 7rq(*Xlog(q/p))v where (Xlog(q/p) ($)> = 5”(1;) aj 10g(‘](£)/p(33>)

Xkr, conserves KL, on P(M) [1, 9].
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Main Theorem

and

Theorem 5 (Equivalence between regular MCMC dynamics on R

fGH flows on P(M).)

We call (M, g, 3) a fiber-Riemannian
Poisson (fRP) manifold, and define the

fiber-gradient Hamiltonian (fGH) flow on M, §,B):
. - KL(
p(M) as. —rr(gracﬁbK
(gradgy, KLy)—AKL,, \ 0

W =7
KLy Reg. MCMC
(D, Q) in RM: Coord Sp. RM+1:

(Wict, (0))'=mq (37 + 57)0lo8 (/). o P QIF", L, e
W) o Wi fa)®) 7

/Samples fromgq; R™

ISampIes fromgq; R™

Then:
Regular MCMC dynamics <= fGH flow with fRP M,

(D, Q) <= (g, 5)-
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Interpret MCMC Dynamics: Case Study

Type 1: D is non-singular (m = 0 in Eq. (1)).
o fGH flow Wk, = —7(grad KL,) — Xk,
o —m(gradKL,): minimizes KL, on P(M).
e —AXky,: conserves KL, on P(M), helps mixing/exploration.
o LD [18] / SGLD [19], RLD [10] / SGRLD [17].
Type 2: D=0 (n=0in Eq. (1)).
o fGH flow Wk, = —Xkr,, conserves KL, on P(M).
o Fragile against SG: no stablizing forces (i.e. (fiber-)gradient flows).
e HMC [7, 16, 2], RHMC [10] / LagrMC [12] / GMC [3].
Type 3: D # 0 and D is singular (m,n > 1 in Eq. (1)).
o fGH flow Wk, = —m(gradg, KL,)—XkL,,
o —m(gradgy KL,): minimizes KLy (.|,)(q(-|y)) on each fiber P(M,).
o —AXky,: conserves KL, on P(M), helps mixing/exploration.
@ Robust to SG (SG appears on each fiber).
e SGHMC [5], SGRHMC [15]/SGGMC [13], SGNHT [6]/gSGNHT [13].
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ParVI Simulation for SGHMC

Deterministic dynamics of SGHMC [5]:

de

By Lemma 1: } d¢ —
SGHMC-det

P € % = Vylogp(d) — CE™'r — CV, logq(r).

dé

By Theorem 5: | d¢

pSGHMC-fGH ) dr

i Velog p(0) —CY~tr—CV,log q(r)—Vglog q(6).

Estimate V log ¢ using ParVI techniques [14], e.g. Blob [4].
@ Over SGHMC: particle-efficient.

@ Over ParVls: more efficient dynamics than LD.

Z_lr,

=Y 1r+V,log q(r),
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Synthetic Experiment
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Latent Dirichlet Allocation (LDA)
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(a) Learning curve (20 ptcls)

(b) Particle efficiency (iter 600)

Figure: Performance on LDA with the ICML data set.
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