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WHAT’S WRONG WITH BACKPROP?

Biologically implausibility:

• Error feedback does not influence neural activity, unlike 

biological feedback mechanisms 

• Non-local weight updates, and more [Bartunov et al, 2018]

Computational Issues:

• Vanishing gradients (due to chain of derivatives)

• Difficulty handling non-differentiable nonlinearities 

(e.g., binary spikes)

• Lack of cross-layer weight update parallelism 



ALTERNATIVES: PRIOR WORK  

• Offline Auxiliary-variable methods 

• MAC (Carreira-Perpiñán & Wang, 2014) and other BCD methods (Zhang 

& Brand, 2017; Zhang & Kleijn, 2017; Askari et al., 2018; Zeng et al., 

2018; Lau et al., 2018; Gotmare et al., 2018)

• ADMM (Taylor et al., 2016; Zhang et al., 2016) 

• offline (batch) is not  scalable to large data and continual learning

• Target propagation methods 

• [LeCun 1986]  [Lee, Fisher, Bengio 2015]  [Bartunov et al, 2018]

• Below backprop-SGD performance levels on standard benchmarks

• Proposed  method:

• Online (mini-batch, stochastic) auxiliary-variable alternating-minimization



OUR APPROACH 

Breaking gradient chains with 

auxiliary activation variables:

• Relaxing nonlinear activations to noisy 

(Gaussian) linear activations followed by 

nonlinearity (e.g., ReLU)

• Alternating minimization over activations 

and weights: explicit activation propagation  

• Weight updates are layer-local, and thus    

can be parallel (distributed, asynchronous)
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Nested

Relaxed

Constrained

Standard neural network objective function:

Add auxiliary activation variables (hard 
constrained problem)

Relax constraints and now amenable 
to alternating minimization

NEURAL NETWORK FORMULATIONS



Forward: compute linear activations at layers 1,…,L

Backward: error propagation by code changes

Parallelizable

Offline algorithms of prior works are not scalable to extremely large datasets and 

not suitable for incremental, continual/lifelong learning, hence …

Note: updateWeights has two options: Apply SGD to the current mini-batch or 

apply BCD to version that includes memory of previous samples using the 

following (via Mairal et al., 2009):

ONLINE ALTERNATING MINIMIZATION



FULLY-CONNECTED NETS

AM greatly outperforms all off-line methods (ADMM of Taylor et al,   

and offline AM), and often matches Adam and SGD (50 epochs)

MNIST CIFAR-10



FASTER INITIAL LEARNING:
POTENTIAL USE AS A GOOD INIT?  

• AM often learns faster than SGD & Adam (backprop-based)  in the 

1st epoch, then matches their performance

MNIST CIFAR-10



RNN: SEQUENTIAL MNISTCONVNETS: LENET5, MNIST

HIGGS DATASET, FULLY-CONNECTED
• AM performs similarly to 

Adam, outperforms SGD

• All methods  greatly 

outperform offline ADMM 

(Taylor’s 0.64 benchmark)  

using less than 0.01%  of 

10.5M-sample HIGGS data



NONDIFFERENTIABLE  
(BINARY) NETS

10

• Backprop replaced by Straight-Through Estimator (STE)

• Comparing with Difference Target Propagation  (DTP)

• DTP took about 200 epochs to reach 0.2 error, 

matching the STE performance 

(Lee et al., 2015)

• AM-Adam with binary activations 

reaches same error in < than 20 epochs 



• Algorithm(s): novel online (stochastic) auxiliary-variable approach 

for training neural networks (prior methods are offline/batch); two 

versions of the approach (memory-based and local-SGD-based)

• Theory: first general theoretical convergence guarantees for 

alternating minimization in the stochastic setting:  the error decays   

at the sub-linear rate                                 in t  iterations

• Extensive Evaluations: variety of architectures and datasets 

demonstrating advantages of online vs offline approaches and 

performance similar to SGD (Adam), with faster initial convergence 

SUMMARY: CONTRIBUTIONS


