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Theoretical Contributions
We provide a novel convergence result for AdaGrad-Norm to
emphasize its robustness to the hyper-parameter tuning over
nonconvex landscapes.

Practical Implications
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Motivation

Problem Setup

Given a differentiable non-convex function, F : Rd → R,
I ‖∇F (x)−∇F (y)‖ ≤ L‖x − y‖, ∀x , y ∈ Rd

Our desired goal ⇒ min
x∈Rd

F (x)

We can achieve ⇒ ‖∇F (x)‖2 ≤ ε

Algorithm

Stochastic Gradient Descent (SGD) at the jth iteration

xj+1 ← xj − ηjG (xj), (1)

where E[G (xj)] = ∇F (xj) and ηj > 0 is the stepsize.
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Motivation

Algorithm: SGD

Set a sequence {ηj}j≥0 for

xj+1 ← xj − ηjG (xj)

Q: How to set the sequence {ηj}j≥0 ?

Difficulty in Choosing Stepsizes

The classical Robbins/Monro theory (Robbins and Monro, 1951) if

∞∑
j=1

ηj =∞ and
∞∑
j=1

η2j <∞; (2)

and the variance of the gradient is bounded 1, then

limj→∞ E[‖∇F (xj)‖2] = 0.

1E[‖G(x)−∇F (x)‖2] ≤ σ2
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Algorithm: SGD

Set a sequence {ηj}j≥0 for

xj+1 ← xj − ηjG (xj)

Q: How to set the sequence {ηj}j≥0 ?

Difficulty in Choosing Stepsizes

The classical Robbins/Monro theory (Robbins and Monro, 1951) if

∞∑
j=1

ηj =∞ and
∞∑
j=1

η2j <∞; (3)

and the variance of the gradient is bounded, then
limj→∞ E[‖∇F (xj)‖2] = 0.

However, the rule is too general for practical applications.



Motivation

Algorithm: SGD

Set a sequence {ηj}j≥0 for

xj+1 ← xj − ηjG (xj)

Possible Choice: Manual Tuning

ηj =


η j ≤ T1

α1η T1 ≤ j ≤ T2

α2η T2 ≤ j ≤ T3

· · ·

However, tuning η, α1, α2, T1, T2, . . . are computationally costly.
In particular, it requires η ≤ 2/L.2

2‖∇F (x)−∇F (y)‖ ≤ L‖x − y‖, ∀x , y ∈ Rd
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Motivation

Algorithm: SGD with Adaptive Stepsize

Set a sequence {bj}j≥0 for ` = 1, 2, · · · , d

[xj+1]` ← [xj ]` −
η

[bj+1]`
[G (xj)]`

Possible Choice: Adaptive Gradient Methods

Among many variants, one is AdaGrad

([bj+1]`)
2 = ([bj ]`)

2 + ([G (xj)]`)
2

I It helps with “increasing the stepsize for more sparse
parameters and decreasing the stepsize for less sparse ones.”
(Duchi et al. 2011)

I However, “co-ordinate” AdaGrad changes the optimization
problem by introducing the “bias” in the solutions, leading to
worse generalization (Wilson et al. 2017)
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Set a sequence {bj}j≥0 for ` = 1, 2, · · · , d

[xj+1]` ← [xj ]` −
η

bj+1
[G (xj)]`

Possible Variant: Norm Version of AdaGrad

(AdaGrad-Norm) b2j+1 = b2j + ‖G (xj)‖2

I Auto-tuning property (Wu, Ward, and Bottou, 2018):
robustness to the choices of hyper-parameters (b0 and η);
connection to Weight/Layer/Batch Normalization;

I Does not affect generalization.
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Theory

Algorithm: SGD with Adaptive Stepsize

xj+1 ← xj −
η

bj+1
G (xj) with b2j+1 = b2j + ‖G (xj)‖2

What is the convergence rate of AdaGrad-Norm?

I Intuition: if E[‖G (xj)‖2] ≤ γ2, then the effective stepsize η
bj

E
[
η

bj

]
≥ η√

jγ2 + b20

I Convex Landscapes O
(

1√
T

)
(Levy, 2018)

I Nonconvex Landscapes O
(
log(T )√

T

)
(Ours, Theorem 2.1)
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Theory

Algorithm: SGD with Adaptive Stepsize

(1) At jth iteration, generate ξj and G (xj) = G (xj , ξj)
(2) xj+1 ← xj − η

bj+1
G (xj) with b2j+1 = b2j + ‖G (xj)‖2

Theorem
Under the assumption:

1. The random vectors ξj , j = 0, 1, 2, . . . , are mutually
independent and also independent of xj ;

2. Bounded variance3: Eξj [‖G (xj , ξj)−∇F (xj)‖2] ≤ σ2;
3. Bounded gradient norm: ‖∇F (xj)‖ ≤ γ uniformly;

AdaGrad-Norm converges to a stationary point w.h.p. at the rate

min
`=0,1,...,T−1

‖∇F (x`)‖2 ≤
C 2

T
+
σC√
T

where C = Õ (log (T/b0 + 1)) and Õ hides η, L and F (x0)− F ∗.

3It means the expectation with respect to ξj conditional on xj .
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(2) xj+1 ← xj − η

bj+1
G (xj) with b2j+1 = b2j + ‖G (xj)‖2

Challenges in the proof:

bj+1 is a random variable correlated with ∇F (xj) and G (xj)

I L-Lipschitz continuous gradient 4

Fj+1−Fj

η ≤ −‖∇Fj‖2
bj+1

+
〈∇Fj ,∇Fj − Gj〉

bj+1︸ ︷︷ ︸
KeyTerm

+
ηL‖Gj‖2
2b2j+1

.

I Unlike the standard SGD with constant stepsize

Eξj
[
〈∇Fj ,∇Fj−Gj 〉

bj+1

]
6= 0;

I New techniques needed to bound KeyTerm:
careful Tower rule, Cauchy-Schwarz, Hölder’s Inequality, etc.

4We write F (xj) = Fj , ∇F (xj) = ∇Fj and G(xj) = Gj .
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Practice

AdaGrad-Norm
We show that AdaGrad-Norm converges 5

min
`=0,1,...,T−1

‖∇F (x`)‖2 ≤ O
(
C1

T
+
σC2√
T

)
where the constants C1 and C2 are explicit and robust to
hyper-parameters b0 and η.

Recall: Eξj [‖G (xj , ξj)−∇F (xj)‖2] ≤ σ2

I For σ ≈ 0
Suppose we know F ∗ and set η = F (x0)− F ∗; the constant
C1 almost matches GD with best stepsize. 6

I For σ > 0
Set η = 1, the constant C2 almost matches SGD with
well-tuned stepsize up to a factor of L log(T/b0 + 1)

5Note we combine Theorem 2.1 and Theorem 2.2
6For the case b1 ≥ ηL ≈ ∆L
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Practice: Synthetic Data with Linear Regression
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Figure 1: Random initialized x0 with η = F (x0)− F ∗ = 650− 0.
(AdaGrad-Norm) 650
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Practice: ResNet-18 on CIFAR10
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Figure 2: Random initialized x0 with η = 1. (AdaGrad-Norm) 1
bj

;

(SGD-Constant) 1
b0

; (SGD-DecaySqrt) 1
b0
√
j

AdaGrad-Norm code: https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py

AdaGrad-Norm code: https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py



Practice: ResNet-50 on ImageNet
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Figure 3: Random initialized x0 with η = 1. (AdaGrad-Norm) 1
bj
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Conclusion

I We provide a novel convergence result for AdaGrad-Norm in
non-convex optimization.The analysis is useful to
adaptive-type methods.

I The convergence bound for AdaGrad-Norm is explicit and
comparable with well-tuned stepsize choice in SGD, but
without careful tuning of the AdaGrad-Norm’s
hyper-parameters

I Numerical experiments suggest that the robustness of
AdaGrad-Norm extends to state-of-the-art models in deep
learning, without sacrificing generalization
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See you

at poster section: Pacific Ballroom #56 (Today 6:30-9:00PM).
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Theory

Difficulty Proofs of SGD do not straightforwardly extend because
bk+1 is a random variable correlated with ∇F (xk), i.e.,

Eξj

[
〈∇Fj ,∇Fj − Gj〉

bj+1

]
6=

Eξj [〈∇Fj ,∇Fj − Gj〉]
bj+1

=
1

bj+1
· 0;

(Cauchy-Schwartz)

Eξj

 1√
b2
j + C 2

− 1

bj+1

 〈∇Fj ,Gj〉

 ≤ Eξj

∣∣∣∣∣∣ 1√
b2
j + C 2

− 1

bj+1

∣∣∣∣∣∣ ‖∇Fj‖‖Gj‖


(Hölder’s Inequality)

E

‖∇Fk‖2√
b2
k+1

 ≥
(
E‖∇Fk‖

4
3

) 3
2

2
√

E
[
b2
k+1

]
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