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Theoretical Contributions
We provide a novel convergence result for AdaGrad-Norm to
emphasize its robustness to the hyper-parameter tuning over
nonconvex landscapes.
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Problem Setup
Given a differentiable non-convex function, F : RY — R,

> IVFG) = VEW)II < Llix =yl Yx,y € R?
Our desired goal = min F(x)

x€ERY
We can achieve = |[[VF(x)||>?<¢

Algorithm
Stochastic Gradient Descent (SGD) at the jth iteration
Xj+1 < X — njG(x),

where E[G(x;)] = VF(x;) and 7; > 0 is the stepsize.
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Algorithm: SGD
Set a sequence {7;};>o for

Xj+1 < Xj — TUG(XJ)

Q: How to set the sequence {7;};>0 ?

Difficulty in Choosing Stepsizes
The classical Robbins/Monro theory (Robbins and Monro, 1951) if

oo o0
an =00 and anz < 00; (3)
j=1 j=1

and the variance of the gradient is bounded, then
limjo0 E[[[VF(x)[|?] = 0.

However, the rule is too general for practical applications.



Motivation

Algorithm: SGD

Set a sequence {7;};>o for

Xj+1 X — 1;G(x))

Possible Choice: Manual Tuning

] J<T
am T1<j<T
an Tr<j<T;

2VF(x) = VF()| < Llx —y|l, VYx,y € R?



Motivation

Algorithm: SGD

Set a sequence {7;};>o for

Xj+1 X — 1;G(x))

Possible Choice: Manual Tuning

] J<T
am T1<j<T
an Tr<j<T;

However, tuning n, a1, ap, T1, To, ... are computationally costly.
In particular, it requires n < 2/L.2

2VF(x) = VF()| < Llx —yl|l, VYx,y € R?
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Algorithm: SGD with Adaptive Stepsize
Set a sequence {bj}j>q for £ =1,2,--- ,d

Djaale < [xle - [bjzl]E[G(ﬁ)]e

Possible Choice: Adaptive Gradient Methods

Among many variants, one is AdaGrad
([bj+1]e)* = ([b1e)* + ([G (x)]e)®

» It helps with “increasing the stepsize for more sparse
parameters and decreasing the stepsize for less sparse ones.”
(Duchi et al. 2011)

» However, “co-ordinate” AdaGrad changes the optimization

problem by introducing the “bias” in the solutions, leading to
worse generalization (Wilson et al. 2017)
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Motivation

Algorithm: SGD with Adaptive Stepsize
Set a sequence {bj}j>q for £ =1,2,--- ,d
[Xj+1le < [xile — bi

Jj+1

[G(x)]e

Possible Variant: Norm Version of AdaGrad
(AdaGrad-Norm) b2, = b? + [|G(x)|]?

» Auto-tuning property (Wu, Ward, and Bottou, 2018):
robustness to the choices of hyper-parameters (by and 7);
connection to Weight/Layer/Batch Normalization;

» Does not affect generalization.
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Theory

Algorithm: SGD with Adaptive Stepsize

77 .
X1 4% — 5 —Glxg) with  bEy = b7 + G|
j+1

What is the convergence rate of AdaGrad-Norm?

» Intuition: if E[||G(x;)||?] < ~?, then the effective stepsize bﬂj

i) 2

bl i+ )

» Convex Landscapes O (f) (Levy, 2018)

» Nonconvex Landscapes O ('f}n) (Ours, Theorem 2.1)
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Theorem
Under the assumption:

1. The random vectors §;,j = 0,1,2, ..., are mutually
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3t means the expectation with respect to &; conditional on x;.



Theory
Algorithm: SGD with Adaptive Stepsize

(1) At jth iteration, generate & and G(x;) = G(xj,&;)
(2) X1 x5 — 55 Glg)  with b7 = b7 + ]| Gx)II?
Theorem
Under the assumption:

1. The random vectors §;,j = 0,1,2, ..., are mutually

independent and also independent of x;;
2. Bounded variance?: E¢ [[|G(x;, &) — VF(x)|?] < o?;
3. Bounded gradient norm: |V F(x;)|| <~ uniformly;

AdaGrad-Norm converges to a stationary point w.h.p. at the rate

where C = O (log (T /by + 1)) and O hides n, L and F(xo) — F*.

®It means the expectation with respect to &; conditional on x;.
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» [-Lipschitz continuous gradient #

Fa=F o _IvFE | (VFVF = G) g
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KeyTerm
» Unlike the standard SGD with constant stepsize
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J+1

*We write F(x;) = F;, VF(x) = VF; and G(x) = G;.



Theory

Algorithm: SGD with Adaptive Stepsize

(1) At jth iteration, generate & and G(x
(2) Xj+1<—Xj—#G(Xj) with bJ2 =

G) = ()9751)2
b7 +11G (%)l
Challenges in the proof:

bj+1 is a random variable correlated with VF(x;) and G(x;)

» [-Lipschitz continuous gradient #

Fa=F o _IvFE | (VFVF = G) g

n - bjt1 bj+1 2bj+1

KeyTerm

» Unlike the standard SGD with constant stepsize
Ee [(VF VF—G))
j

2] #o
bjy1
» New techniques needed to bound KeyTerm:
careful Tower rule, Cauchy-Schwarz, Holder's Inequality, etc.

*We write F(x;) = F;, VF(x) = VF; and G(x;) = G;.
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Practice

AdaGrad-Norm
We show that AdaGrad-Norm converges °

. G oG
F(x)P<0O| =+ —2=
oin VRGP <0 (4 72)
where the constants C; and ( are explicit and robust to
hyper-parameters by and 7.
Recall: E¢[[|G(x;, &) — VF(x)|°] < 0
» Foro =0
Suppose we know F* and set 7 = F(xp) — F*; the constant
C; almost matches GD with best stepsize. °

VL

» Foro >0
Set n = 1, the constant C; almost matches SGD with
well-tuned stepsize up to a factor of Llog(T /by + 1)

5Note we combine Theorem 2.1 and Theorem 2.2
5For the case by > nl~ AL



Practice: Synthetic Data with Linear Regression
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Figure 1: Random initialized xo with n = F(xp) —

(AdaGrad-Norm) £22; (SGD-Constant) %2; (SGD-DecaySqrt)
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ResNet at 120

Practice: ResNet-18 on CIFAR10
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Figure 2: Random initialized xo with n = l. (AdaGrad-Norm) b

(SGD-Constant) £ -; (SGD-DecaySqrt) bm/

https://github.com /xwuShirley/pytorch /blob/master /torch /optim /adagradnorm.py

AdaGrad-Norm code:



Practice: ResNet-50 on ImageNet

ResNet at 50 ResNet at 90
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Conclusion

» We provide a novel convergence result for AdaGrad-Norm in
non-convex optimization.The analysis is useful to
adaptive-type methods.

» The convergence bound for AdaGrad-Norm is explicit and
comparable with well-tuned stepsize choice in SGD, but
without careful tuning of the AdaGrad-Norm's
hyper-parameters

» Numerical experiments suggest that the robustness of
AdaGrad-Norm extends to state-of-the-art models in deep
learning, without sacrificing generalization



See you

at poster section: Pacific Ballroom #56 (Today 6:30-9:00PM).



Practice: ResNet-50 on ImageNet

--e-- AdaGrad_Norm --+- SGD_DecaySqrt
--s-- SGD_Constant --+- AdaGrad_Coordinate
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Theory

Difficulty Proofs of SGD do not straightforwardly extend because
bk+1 is a random variable correlated with VF(xy), i.e.,

(VF;,VF—G)1 , B [(VF,VF-G)] 1
Eg, . - .0
bj1 bj1 bjt1
(Cauchy-Schwartz)
1 1 1 1
B || ——— -+ | (V. G)| <E¢ || ——— - —|IVFlG
&) [(\/W bj+1)< J J> &j ”\/m bj+1 H J”H J|]

(Holder's Inequality)

_ (Ervags)’

R[]

IV Fl?

E




	Motivations
	Theoretical Contributions
	We provide a novel convergence result for AdaGrad-Norm to emphasize its robustness to the hyper-parameter tuning over nonconvex landscapes.

	Practical Implications

