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Batch Normalization

A vanilla fully-connected layer

z=ocWu+b).

With batch normalization (loffe & Szegedy 2015):

z = o(yN(Wu) + ), N(§) := %E%.

Batch normalization works well in practice, e.g. allows stable training with large
learning rates, works well in high dimensions or ill-conditioned problems

Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)]
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A vanilla fully-connected layer

z=ocWu+b).

With batch normalization (loffe & Szegedy 2015):

z=0(\N(Wu)+3), N := %E%

Batch normalization works well in practice, e.g. allows stable training with large
learning rates, works well in high dimensions or ill-conditioned problems

Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)]

Question: Can we quantify the precise effect of BN on gradient descent (GD)?



Batch Normalization on Ordinary Least Squares

Linear regression model:

Input: = € RY Label: y € R Model: y = 27 w* + noise



Batch Normalization on Ordinary Least Squares

Linear regression model:
Input: = € RY Label: y € R Model: y = 27 w* + noise

OLS regression without BN

Optimization problem: min,, Jo(w) := Eqy[3(y — 2Tw)?]
Gradient descent dynamics: wgy1 = wi — eV Jo(wy) = wy + (g — Hwy,),
where H := E[zzT], g:=Elzy], c:=E}%.

contraction ratio




Batch Normalization on Ordinary Least Squares

Linear regression model:
Input: = € RY Label: y € R Model: y = 27 w* + noise

OLS regression with BN

Optimization problem: ming ., J(a, w) = Eg [% (y —a N(:cTw))Q]
Gradient descent dynamics:

wlyg
_ _ — k _
Ap41 = ag gavaj(akv wk) =ai + 5a<\/m ak))

~ 1'/‘1
W41 = Wk — eV (ak, wy) = Wi + —F—2— (g — ,/l}']'/, Hwk>.
V Wi Hwy, w;. Wy
How does this compare with the GD case?
Wg41 = W — vaJo(wk) = Wi + 5(g — Hwk)

Properties of interest: convergence, robustness



Summary of Theoretical Results

Property Gradient Descent  Gradient Descent with BN
Convergence only for small ¢  arbitrary ¢ provided ¢, < 1
Convergence Rate linear linear (can be faster)
Robustness to Learning Rates  small range of ¢ wide range of ¢
Robustness to Dimensions no effect the higher the better
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Summary of Theoretical Results

Property Gradient Descent  Gradient Descent with BN
Convergence only for small ¢  arbitrary ¢ provided ¢, < 1
Convergence Rate linear linear (can be faster)
Robustness to Learning Rates  small range of ¢ wide range of ¢
Robustness to Dimensions no effect the higher the better

e Those properties are also observed in neural network experiments.
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