
A Quantitative Analysis of the Effect of

Batch Normalization on Gradient Descent

Yongqiang Cai1, Qianxiao Li1,2, Zuowei Shen1

9-15 June 2019 (ICML), Long Beach, CA, USA

1Department of Mathematics, National University of Singapore, Singapore

2Institute of High Performance Computing, A*STAR, Singapore



Batch Normalization

A vanilla fully-connected layer

z = σ(Wu+ b).

With batch normalization (Ioffe & Szegedy 2015):

z = σ(γN(Wu) + β), N(ξ) := ξ−E[ξ]√
Var[ξ]

.

Batch normalization works well in practice, e.g. allows stable training with large

learning rates, works well in high dimensions or ill-conditioned problems

Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)]

Question: Can we quantify the precise effect of BN on gradient descent (GD)?

1



Batch Normalization

A vanilla fully-connected layer

z = σ(Wu+ b).

With batch normalization (Ioffe & Szegedy 2015):

z = σ(γN(Wu) + β), N(ξ) := ξ−E[ξ]√
Var[ξ]

.

Batch normalization works well in practice, e.g. allows stable training with large

learning rates, works well in high dimensions or ill-conditioned problems

Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)]

Question: Can we quantify the precise effect of BN on gradient descent (GD)?

1



Batch Normalization on Ordinary Least Squares

Linear regression model:

Input: x ∈ Rd Label: y ∈ R Model: y = xTw∗ + noise

2



Batch Normalization on Ordinary Least Squares

Linear regression model:

Input: x ∈ Rd Label: y ∈ R Model: y = xTw∗ + noise

OLS regression without BN

Optimization problem: minw J0(w) := Ex,y[12(y − x
Tw)2]

Gradient descent dynamics: wk+1 = wk − ε∇wJ0(wk) = wk + ε(g −Hwk),
where H := E[xxT ], g := E[xy], c := E[y2].

co
nt

ra
ct

io
n 

ra
tio

2



Batch Normalization on Ordinary Least Squares

Linear regression model:

Input: x ∈ Rd Label: y ∈ R Model: y = xTw∗ + noise

OLS regression with BN

Optimization problem: mina,w J(a,w) = Ex,y
[
1
2

(
y − a N(xTw)

)2]
Gradient descent dynamics:

ak+1 = ak − εa∇aJ(ak, wk) = ak + εa

(
wT

k g√
wT

k Hwk

− ak
)
,

wk+1 = wk − ε∇wJ(ak, wk) = wk +
εak√
wT

k Hwk

(
g − wT

k g

wT
k Hwk

Hwk

)
.

How does this compare with the GD case?

wk+1 = wk − ε∇wJ0(wk) = wk + ε(g −Hwk)

Properties of interest: convergence, robustness
2



Summary of Theoretical Results

Property Gradient Descent Gradient Descent with BN

Convergence only for small ε arbitrary ε provided εa ≤ 1

Convergence Rate linear linear (can be faster)

Robustness to Learning Rates small range of ε wide range of ε

Robustness to Dimensions no effect the higher the better

• Those properties are also observed in neural network experiments.

(a) Loss of GD and BNGD(d = 100) (b) Effect of dimension on BNGD

(c) Accuracy of BNGD on MNIST

3



Summary of Theoretical Results

Property Gradient Descent Gradient Descent with BN

Convergence only for small ε arbitrary ε provided εa ≤ 1

Convergence Rate linear linear (can be faster)

Robustness to Learning Rates small range of ε wide range of ε

Robustness to Dimensions no effect the higher the better

• Those properties are also observed in neural network experiments.

(a) Loss of GD and BNGD(d = 100) (b) Effect of dimension on BNGD (c) Accuracy of BNGD on MNIST

3



Poster: Pacific Ballroom #54

3


