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Neural Architecture

Neural Network Architectures .
often pre-trained

on some datasets
VGGNet Inception
Task
(Dataset)

Sometimes... Trial and Error!

® 3 known architecture
»  works well on our tasks.

J 7 Happy! Other times...

® Find a good one
® Design a brand-new «
architecture and train it




One-Shot Neural Architecture Search
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Difficulties for Practitioners

How to choose / tune the search strategy?

Search Space Search Strategy
.
DAG representation of DNN

rGradient—Based Method
inp_ug—éé— output W < W + @wa(w, C(H))
I 0« 0 +egVof(w,c(0))

hyper-parameter: step-size
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Contributions

Novel Search Strategy for One-shot NAS

1. arbitrary search space (categorical + ordinal)
2. robust against its inputs (hyper-param. and search space)

Our approach 1. Stochastic Relaxation exponential family

max f(w, c) = max|J(w,0) := [ f(w,c)p(c| O)dc

w,C w,0

differentiable w.r.t. w and 6

2. Stochastic Natural Gradient + Adaptive Step-Size
w't = w! + eﬁvvwﬁw\t, o)

0" = 0" + 4 F(0") ' VoJ(witl, 67) Natural Gradient

* Under appropriate step-size

J(w', 0" < J(w', 0" < J(w', 8"") Monotone Improvement
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Results and Detalls

® Faster & Competitive Accuracy to other one-shot NAS

Table 1: Comparison of different architecture search methods on CIFAR-10. The
search cost indicates GPU days for architecture search excluding the retraining cost.

Method Search Cost Params Test Error
(GPU days) (M) (%)
NASNet-A (Zoph et al., 2018) 1800 3.3 2.65
NAONet (Luo et al., 2018) 200 128 2.11
ProxylessNAS-G (Cai et al., 2019) 4 5.7 2.08
SMASHvV2 (Brock et al., 2018) 1.5 16.0 4.03
DARTS second order (Liu et al., 2019) 4 3.3 2.76 (£0.09)
DARTS first order (Liu et al., 2019) 1.5 3.3 3.00 (+0.14)
SNAS (Xie et al., 2019) 1.5 2.8 2.85 (+0.02)
ENAS ( : : : :
ASNG-NAS 0.11 3.9 2.83 (+0.14)
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Figure 2: Transitions of test error
against elapsed time 1n the architec-
ture search phase.

The detail will be explained at Poster #53
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