Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

OYouhei Akimoto (University of Tsukuba / RIKEN AIP) Shinichi Shirakawa (Yokohama National University)

Nozomu Yoshinari (Yokohama National University)

Kento Uchida (Yokohama National University)

Shota Saito (Yokohama National University)

Kouhei Nishida (Shinshu University)

Neural Architecture

Neural Network Architectures

often pre-trained on some datasets

Sometimes...

 a known architecture works well on our tasks.

Other times...

- Find a good one
- Design a brand-new architecture and train it

Trial and Error!

One-Shot Neural Architecture Search

Joint Optimization of Architecture c and Weights w

NAS as hyper-parameter search $\max_{\bm{c}} f(\bm{w}^*(\bm{c}), \bm{c}) = \operatorname*{argmax} f(\bm{w}, \bm{c})$ subject to $\bm{w}^*(\bm{c}) = \operatorname*{argmax} f(\bm{w}, \bm{c})$

One-shot NAS

$$\max_{oldsymbol{w},oldsymbol{c}}f(oldsymbol{w},oldsymbol{c})$$

optimization of x and c within 1 training

Difficulties for Practitioners

How to choose / tune the search strategy?

Search Strategy

l

Gradient-Based Method

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + \epsilon_{\boldsymbol{w}} \nabla_{\boldsymbol{w}} f(\boldsymbol{w}, \boldsymbol{c}(\boldsymbol{\theta}))$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \epsilon_{\boldsymbol{\theta}} \nabla_{\theta} f(\boldsymbol{w}, \boldsymbol{c}(\boldsymbol{\theta}))$$

hyper-parameter: step-size

Other Choices

- Evolutionary Computation Based
- Reinforcement Learning Based
- how to treat integer variables such as #filters?
- how to tune the hyper-parameters in such situations?

Contributions

Novel Search Strategy for One-shot NAS

- 1. arbitrary search space (categorical + ordinal)
- 2. robust against its inputs (hyper-param. and search space)

Our approach 1. Stochastic Relaxation

$$\max_{\boldsymbol{w},\boldsymbol{c}} f(\boldsymbol{w},\boldsymbol{c}) \Rightarrow \max_{\boldsymbol{w},\boldsymbol{\theta}} J(\boldsymbol{w},\boldsymbol{\theta}) := \int f(\boldsymbol{w},\boldsymbol{c}) p(\boldsymbol{c} \mid \boldsymbol{\theta}) d\boldsymbol{c}$$

differentiable w.r.t. w and θ

2. Stochastic Natural Gradient + Adaptive Step-Size

$$m{w}^{t+1} = m{w}^t + \epsilon_{m{w}}^t
abla_{m{w}} \widehat{J(m{w}^t, m{ heta}^t)}$$

$$m{\theta}^{t+1} = m{\theta}^t + \epsilon_{m{\theta}}^t \mathbf{F}(m{ heta}^t)^{-1}
abla_{m{\theta}} \widehat{J(m{w}^{t+1}, m{ heta}^t)}$$
 Natural Gradient

Under appropriate step-size

$$J(\boldsymbol{w}^t, \boldsymbol{\theta}^t) < J(\boldsymbol{w}^{t+1}, \boldsymbol{\theta}^t) < J(\boldsymbol{w}^{t+1}, \boldsymbol{\theta}^{t+1})$$
 Monotone Improvement

Results and Details

Faster & Competitive Accuracy to other one-shot NAS

Table 1: Comparison of different architecture search methods on CIFAR-10. The search cost indicates GPU days for architecture search excluding the retraining cost.

Method	Search Cost (GPU days)	Params (M)	Test Error (%)
NASNet-A (Zoph et al., 2018) NAONet (Luo et al., 2018)	1800 200	3.3 128	$2.65 \\ 2.11$
ProxylessNAS-G (Cai et al., 2019) SMASHv2 (Brock et al., 2018)	$\frac{4}{1.5}$	5.7 16.0	$2.08 \\ 4.03$
DARTS second order (Liu et al., 2019) DARTS first order (Liu et al., 2019) SNAS (Xie et al., 2019) ENAS (Pham et al., 2018) ASNG-NAS	$ \begin{array}{r} 4 \\ 1.5 \\ 1.5 \\ 0.45 \\ 0.11 \end{array} $	3.3 3.3 2.8 4.6 3.9	$2.76 (\pm 0.09)$ $3.00 (\pm 0.14)$ $2.85 (\pm 0.02)$ 2.89 $2.83 (\pm 0.14)$

Figure 2: Transitions of test error against elapsed time in the architecture search phase.

The detail will be explained at Poster #53