Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory

Huizhuo Yuan¹, Yuren Zhou², Chris Junchi Li³, Qingyun Sun⁴

¹PekingUniversity, ²Duke University, ³Tencent AI Lab, ⁴Stanford University

Poster: Wed Jun 12, 2019@Pacific Ballroom 210

ICML 2019, Long Beach, CA

Alternating Direction Method of Multipliers (ADMM)

▶ Goal is to solve

$$\underset{x \in \mathbb{R}^d}{\text{minimize }} f(x) + g(Ax) \tag{1}$$

- $\triangleright f(x)$ and g(y) are defined on \mathbb{R}^d and \mathbb{R}^m , separately
- \triangleright Allow f and g to be nonsmooth functions in (1)
- Rewrite (1) as

$$\begin{array}{ll} \underset{x \in \mathbb{R}^d, z \in \mathbb{R}^m}{\text{minimize}} & f(x) + g(z) \\ \text{subject to} & Ax - z = 0 \end{array}$$

Scatters everywhere in statistical learning and signal processing:
 Lasso, logistic regression, elastic net, and many more

Alternating Direction Method of Multipliers (ADMM)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^d, z \in \mathbb{R}^m}{\text{minimize}} & f(x) + g(z) \\ \text{subject to} & Ax - z = 0 \end{array}$$

We adopt the Generalized ADMM (G-ADMM) setting for solving (2), which introduces a new relaxation parameter $\alpha \in (0,2)$ Algorithm proposed by [Eckstein-Bertsekas 1992]:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x) + \frac{\rho}{2} || Ax - z_k + u_k ||_2^2 \right\}$$

$$z_{k+1} = \underset{z}{\operatorname{argmin}} \left\{ g(z) + \frac{\rho}{2} || \alpha A x_{k+1} + (1 - \alpha) z_k - z + u_k ||_2^2 \right\}$$

$$u_{k+1} = u_k + (\alpha A x_{k+1} + (1 - \alpha) z_k - z_{k+1})$$
(3a)
$$(3b)$$

▶ When $\alpha = 1$, convergence rate is known

Linearized ADMM

- ▶ *f* is nonsmooth with easy proximal mappings
- First-order Talor approximation to the second term of (3a):

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x) + \frac{\tau_L}{2} \left\| x - \left(x_k - \frac{\rho}{\tau_L} A^{\top} (A x_k - z_k + u_k) \right) \right\|_2^2 \right\}$$
(4a)

▶ Total variation minimization problem [Ruding-Osher-Fatemi 1992]

(4a) and (3b) respectively correspond to the proximal mappings of $\|\cdot\|_1$ and $\frac{1}{2}\|\cdot-b\|_2^2$

Gradient Based ADMM

- f is differentiable but does not have an easy proximal mapping
- g is nonsmooth with easy proximal mappings
- A gradient step is taken instead of minimizing the augmented Lagrangian function directly

$$x_{k+1} = x_k - \frac{1}{\tau_G} \left(\nabla f(x_k) + \rho A^{\top} (Ax_k - z_k + u_k) \right)$$
 (5a)

Sparse logistic regression problem as an example

minimize
$$\frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-b_i(a_i^{\top} x + v))) + \lambda ||x||_1$$
 (6)

Continuous Limit of G-ADMM

We study the continuous limit of the generalized ADMM (G-ADMM):

- The seminal work [Su-Boyd-Candes 2014] provide new insights on understanding the convergence of (accelerated) gradient method: connecting (a second-order) ODE to the continuous limit of AGM
- Many follow-up works on AGM variants: FISTA, heavy ball method using continuous dynamical systems [Shi-Du-Jordan-Su 2018, Wibisono-Wilson-Jordan 2016, Wilson-Recht-Jordan 2016, Krichene-Bayen-Bartlett 2015]
- Very recently, [Franca-Robinson-Vidal 2018a, b] made a significant step towards understanding G-ADMM using the tools of Differential Equation for the cases where f and g are both smooth
- We now extend the analysis to problems with nonsmooth f and g, using Differential Inclusion

Continuous Limit of Linearized and Gradient Based ADMM

The continuous-time limit of the iterates $\{x_k\}$ of linearized ADMM (4a) and gradient-based ADMM (5) is given by the differential inclusion

$$0 \in \partial F(X(t)) + \left(cI + \frac{1 - \alpha}{\alpha} A^{\top} A\right) \dot{X}(t) \tag{7}$$

Solution X(t) of differential inclusion (7) has $\mathcal{O}(t^{-1})$ convergence rate:

$$F(X(t)) - F(x^*) \le \frac{\kappa_1^2 ||x_0 - x^*||_2^2}{2t}$$

- \triangleright Rescale the time by setting $t = \rho^{-1}k$
- $ho
 ho
 ightarrow \infty$ and $au_L/
 ho
 ightarrow c \in (0,\infty)$ $(au_G/
 ho
 ightarrow c$ for gradient-based)
- \triangleright Initial value $X(0) = x_0$
- ho κ_1^2 is defined to be the largest eigenvalue of $(cI + (1 \alpha)/\alpha A^{\top}A)$

Continuous Limit of G-ADMM

The continuous limit of iterates of $\{x_k\}$ in Algorithm (3) is given by the following differential inclusion:

$$\frac{1}{\alpha}(A^{\top}A)\dot{X}(t) + \partial F(X(t)) \ni 0 \tag{8}$$

Let x^* be a minimizer of F. Solution X(t) of differential inclusion (8) has $\mathcal{O}(t^{-1})$ convergence rate:

$$F(X(t)) - F(x^*) \le \frac{\sigma_1^2 \|x_0 - x^*\|_2^2}{2\alpha t}$$
 (9)

- \triangleright Rescale the time by setting $t = \rho^{-1}k$
- $\rho \to \infty$
- \triangleright Initial value $X(0) = x_0$
- ho σ_1 is defined to be the largest singular value of matrix A

Continuous Limit of Accelerated G-ADMM

$$\frac{1}{\alpha}(A^{\top}A)\left(\ddot{X}(t) + \frac{r}{t}\dot{X}(t)\right) + \partial F(X(t)) \ni 0 \tag{10}$$

► Algorithm (omitted here) first proposed by [Goldstein-O'Donoghue-Setzer-Baraniuk 2014]

Theorem

 \triangleright (High Friction) When $r \ge 3$

$$F(X(t)) - F(x^*) \le \frac{C(r, \alpha, \sigma_1) \|x_0 - x^*\|_2^2}{t^2}$$

 \triangleright (Low Friction) When 0 < r < 3

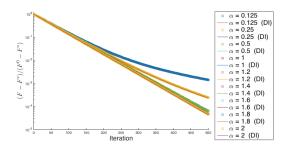
$$F(X(t)) - F(x^*) \le \frac{C(r, \alpha, \sigma_1) \|x_0 - x^*\|_2^2}{t^{2r/3}}$$

ICML 2019, Long Beach, CA

Total Variation Minimization: Numerical Experiments

$$\begin{array}{ll} \underset{x,z\in\mathbb{R}^n}{\text{minimize}} & \frac{1}{2}\|x-b\|_2^2+\lambda\|z\|_1 \\ \text{subject to} & z=Dx \end{array}$$

Fits to our problem with A=D, $f(x)=\frac{1}{2}\|x-b\|_2^2$ and $g(z)=\lambda\|z\|_1$



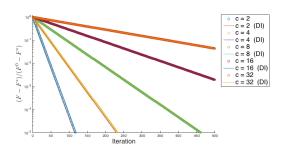


Figure: On total variation minimization problem, the plots are the trajectory of linearized ADMM with $\rho=10$ and the corresponding differential inclusion, the first plot is for different α from 2^{-3} to 2 when c=10, second plot is for different c from t=1 to t=100.

Sparse Logistic Regression: Numerical Experiments

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{d-1}, v \in \mathbb{R}}{\text{minimize}} & \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-b_i(a_i^\top x + v)) + \lambda \|z\|_1 \\ \text{subject to} & z = x \end{array}$$

Fits to our problem with $\bar{x}=(x,v)$, $f(\bar{x})=\log(1+\exp(-b_i(a_i^\top x+v))$, A=I, and $g(\bar{x})=\lambda\|\bar{x}_{1:n}\|_1$

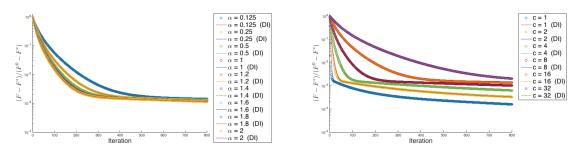


Figure: On sparse logistic regression, the plots are gradient ADMM and the differential inclusion when $\rho=10$, first plot is for different α from 2^{-3} to 2 when c=10, second plot is for different c from 1 to 32 when $\alpha=1.6$

Conclusion

- ► ADMM is a very popular practical algorithm for large-scale statistical learning and signal processing tasks
- Differential inclusions associated with nonsmooth ADMM variants can provide new insights into those algorithms
- We provide the first formulation of those differential inclusions for G-ADMM with relaxation parameters
- ▶ Continuous-time rate in (9) matches existing discrete-time analysis [He-Yuan 2012, Eckstein-Yao 2015], but can be proved sharper than $\mathcal{O}(t^{-1})$

Thank You!

Poster: Wed Jun 12, 2019@Pacific Ballroom 210