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First order methods (gradient descent)

=» running time strongly depends on matrix structure

=» in general, takes time at least Q(m?*->/poly(g))
Second order methods (Newton method, IRLS)

=>» interior point method: O(m'/2) linear system solves
=>» can be made O(n'/2) with a lot of work [Lee-Sidford '14]

“Hybrid” method
=» [Christiano-Kelner-Madry-Spielman-Teng ’11] O(m/3/€11/3) linear system solves
=» ~30 pages of description and proofs for complicated method
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Nonstandard Optimization Primitive
=>» Objective function is max ., min,,_, >rx2/3r,
=» Similar analysis to packing/covering LP [Young ’'01]

=>» {, version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16, ‘17]

=» Any insights for new optimization methods?
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More details at poster
#208



