
Improved Convergence for ℓ∞ and ℓ1
Regression via Iteratively

Reweighted Least Squares

Alina	Ene,	Adrian	Vladu

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

*	R	=	diag(r)

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

*

**

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

equivalent	to	linear	
programming

*

**

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

equivalent	to	linear	
programming

*

**

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

equivalent	to	linear	
programming

*

**

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

equivalent	to	linear	
programming

*

**

IRLS	Method

min	∑rixi2

Ax =	b

Basic	primitive:

min	|x|p
Ax =	b

x =	R-1AT(ATR-1A)-1Ab

solution	given	by	one	
linear	system	solve

**	p	=	{1,∞}*	R	=	diag(r)

“Hard”	problem:

equivalent	to	linear	
programming

*

**

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

s
t

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

minimize	
congestion	of	

flow	x

s
t

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

minimize	
congestion	of	

flow	x

boundary	condition:	
x routes	demand	

from	s	to	t

s
t

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b.5

.5

0
.5

.5 .5

.5

minimize	
congestion	of	

flow	x

boundary	condition:	
x routes	demand	

from	s	to	t
Maximum	flow

s
t

+1

+1

-1

-1
min	|x|1
Ax =	b

Benchmark:	Optimization	on	Graphs

+1

+1

-1

-1
min	|x|1
Ax =	b

minimize
cost	of
flow	x

Benchmark:	Optimization	on	Graphs

+1

+1

-1

-1
min	|x|1
Ax =	b

minimize
cost	of
flow	x

boundary	condition:	
x routes	demand	

from	+1	to	-1

Benchmark:	Optimization	on	Graphs

Minimum	cost	flow

+1

+1

-1

-1
min	|x|1
Ax =	b

minimize
cost	of
flow	x

boundary	condition:	
x routes	demand	

from	+1	to	-1

1 1

1
1

0

0

0

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

min	|x|1
Ax =	b

max	flow min	cost	flow

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

min	|x|1
Ax =	b

max	flow min	cost	flow

Q:	Are	these	problems	
really	that	hard?

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

min	|x|1
Ax =	b

max	flow min	cost	flow

Q:	Are	these	problems	
really	that	hard?

First	order	methods	(gradient	descent)
➜ running	time	strongly	depends	on	matrix	structure
➜ in	general,	takes	time	at	least	Ω(m1.5/poly(ε))
Second	order	methods	(Newton	method,	IRLS)
➜ interior	point	method:	Õ(m1/2) linear	system	solves
➜ can	be	made	Õ(n1/2)	with	a	lot	of	work		[LS	’14]
“Hybrid”	method
➜ [CKMST,	STOC	’11]	Õ(m1/3/ε11/3) linear	system	solves
➜ ~30	pages	of	description	and	proofs	for	complicated	method

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

min	|x|1
Ax =	b

max	flow min	cost	flow

Q:	Are	these	problems	
really	that	hard?

First	order	methods	(gradient	descent)
➜ running	time	strongly	depends	on	matrix	structure
➜ in	general,	takes	time	at	least	Ω(m1.5/poly(ε))
Second	order	methods	(Newton	method,	IRLS)
➜ interior	point	method:	Õ(m1/2) linear	system	solves
➜ can	be	made	Õ(n1/2)	with	a	lot	of	work		[Lee-Sidford ’14]
“Hybrid”	method
➜ [CKMST,	STOC	’11]	Õ(m1/3/ε11/3) linear	system	solves
➜ ~30	pages	of	description	and	proofs	for	complicated	method

Benchmark:	Optimization	on	Graphs

min	|x|∞
Ax =	b

min	|x|1
Ax =	b

max	flow min	cost	flow

Q:	Are	these	problems	
really	that	hard?

First	order	methods	(gradient	descent)
➜ running	time	strongly	depends	on	matrix	structure
➜ in	general,	takes	time	at	least	Ω(m1.5/poly(ε))
Second	order	methods	(Newton	method,	IRLS)
➜ interior	point	method:	Õ(m1/2) linear	system	solves
➜ can	be	made	Õ(n1/2)	with	a	lot	of	work		[Lee-Sidford ’14]
“Hybrid”	method
➜ [Christiano-Kelner-Madry-Spielman-Teng ’11]	Õ(m1/3/ε11/3) linear	system	solves
➜ ~30	pages	of	description	and	proofs	for	complicated	method

Benchmark:	Optimization	on	Graphs

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

*	no	matter	what	the	structure	of	the	underlying	matrix	is

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

≤	OPT

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

≤	OPTGuess	
OPT	value (.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

≤	OPTGuess	
OPT	value (.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

r =	1

≤	OPTGuess	
OPT	value

Initialize

1
1

1
1

1

1

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

1
1

1
1

1

1

.6
.4

.2

.4

.4
.4
.6

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.44
1

1

1.44

.6
.4

.2

.4

.4
.4
.6

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.44
1

1

1.44

.6
.4

.2

.4

.4
.4
.6

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.44
1

1

1.44

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.44
1

1

1.44

.55
.44

.11

.44

.44
.44

.55

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.75
1

1

1.75

.55
.44

.11

.44

.44
.44

.55

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1.75
1

1

1.75

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

2
1

1

2

(.5)

This	work
Natural	IRLS	method	runs	in	Õ(m1/3/ε2/3+1/ε2) iterations

min	|x|∞
Ax =	b

s
t

min	∑	rixi2

Ax =	b

r =	1

ri ←	ri *	
max{(xi/OPT)2,	1}

≤	OPTGuess	
OPT	value

Initialize

Solve	least	
squares	problem

Update	r

1
1

1
1

.5
.5

0

.5

.5 .5

.5

(.5)

2

2

➜Objective	function	is	maxr≥0 minAx=b ∑rixi2/∑ri

Similar	analysis	to	packing/covering	LP		[Young	’01]

ℓ1 version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16,	‘17]

Nonstandard	Optimization	Primitive

➜Objective	function	is	maxr≥0 minAx=b ∑rixi2/∑ri

➜ Similar	analysis	to	packing/covering	LP		[Young	’01]

ℓ1 version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16,	‘17]

Nonstandard	Optimization	Primitive

➜Objective	function	is	maxr≥0 minAx=b ∑rixi2/∑ri

➜ Similar	analysis	to	packing/covering	LP		[Young	’01]

➜ ℓ1 version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16,	‘17]

Nonstandard	Optimization	Primitive

➜Objective	function	is	maxr≥0 minAx=b ∑rixi2/∑ri

➜ Similar	analysis	to	packing/covering	LP		[Young	’01]

➜ ℓ1 version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16,	‘17]

Nonstandard	Optimization	Primitive

➜Objective	function	is	maxr≥0 minAx=b ∑rixi2/∑ri

➜ Similar	analysis	to	packing/covering	LP		[Young	’01]

➜ ℓ1 version is a type of “slime mold dynamics” [Straszak-
Vishnoi ’16,	‘17]

➜ Any	insights	for	new	optimization	methods?

Nonstandard	Optimization	Primitive

Thank	You!

More	details	at	poster	
#208

