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Main Results W

e Several fundamental first-order methods for smooth or regularized
optimization possess a convergence rate of o(1/k) on convex
problems

e Better than the best known rate of O(1/k)

Hilbert space Euclidean space
Smooth optimization Gradient descent | Coordinate descent
Regularized optimization | Proximal gradient | Proximal coordinate descent

e The key elements:
Descent method

Summability of f(xx) — f* from an implicit regularization on the
iterate distance to the solution set

e The implicit regularization is algorithm-specific
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Gradient Descent W

e Consider the following problem in a Hilbert space

min  f(x),

X

with the solution set Q nonempty and f* = miny f(x)

e f is L-Lipschitz continuously differentiable (called smooth from now
on) and convex

® Xyi1 < xx — axVf(xk) with ay such that for given v € (0, 1]
Omax = Qtmin, and amin € (07 (2 - 7)/L]'

Qi € [amin,amax]a
f(xk — ke VI(xi)) < F(xi) — 255V F(xi) ||

e Includes fixed step variants

e Best known existing convergence rate for f(xx) — f* is O(1/k), and
we show a o(1/k) convergence rate
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Extension to Coordinate Descent W

e Consider R" (n < o0) with the unit vectors {e1,..., ey}, and the
function f has componentwise Lipschitz constants Ly,...,L, >0
such that

|Vif(x) — Vif(x + he)| < L;j|h|, forall x € R"and all he R

e Given {Z;}f’ 1 such that L; > L; for all i, the CD update is

vikf (Xk)

Xk+1 — XK — 7

I3
ik

where iy is the coordinate selected for updating at the kth iteration
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Stochastic Coordinate Descent W

e Stochastic coordinate descent (SCD) picks each ik independently
following a pre-specified fixed probability distribution for all iterations:

n
pi>0, i=12....nm Zp,-:l (1)
i=1

e Known similar O(1/k) convergence rates to f* for E [f(xk)]
(expectation over the coordinate picks):
® Nesterov (2012) for p; [I-B with 3 € [0, 1]
® Qu and Richtarik (2016) for arbitrary sampling strategies
satisfying (1)
e We get the same improvement to o(1/k) for SCD with any samplings
satisfying (1)
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Regularized Optimization \/

o Consider regularized optimization of the form:
min  F(x) = f(x) + ¥(x)

e f smooth and convex as above,

e W: convex, extended-valued, proper, and closed, can be
nondifferentiable
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Proximal Gradient W

e Proximal gradient (Bruck Jr., 1975): xx11 < xx + dk, where

dx = argming (Vf (xx),d) + ﬁ”d“z + V(xx + d),
€ [aminaamax]a F(Xk + dk) < F(Xk) - ﬁ”dk”z

e Known: in Hilbert spaces, the same O(1/k) convergence rate as
gradient descent when f is convex

e We again get a o(1/k) convergence rate
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Proximal Coordinate Descent W

e Assume:
Euclidean space
V is separable: for z = (z1,...,2,), ¥(z) =>.7_; V;(z)
e Extended from proximal gradient: like the extension from GD to CD:

X1 ¢ xk + dfe,,
L;
d,-k = argmin V; f(xx)d + —kg? 4 Vi, ((xk)i, + d)
, deR 2

e Known O(1/k) convergence rates for convex f:
Lu and Xiao (2015): uniform sampling
Lee and Wright (2018): any sampling, with the additional
assumption

MaXy: F(x)<F(x0) diSt(X,Q) < 00

e Again we extend the rate to o(1/k) for any fixed sampling strategies,

without any additional assumptions
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Thanks for Listening Y

See you at poster: Pacific Ballroom #207
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