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* SGD with replacement: (often appears in algorithm analysis)

* Xk = Xp—1 — )/st(k) (xk—l) < We call this SGD

* s(k) uniformly randomfrom|n], 1<k <T

e SGD without replacement: (often appears in reality)

* Xli = xli—l —YVfs. (0 (xli—l) < We call this RandomShuffle

* g; uniformly from random permutationof [n],1 <k <n
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* So a natural question: which one is better?

A Numerical Comparison: (Bottou, 2009)

Random selection: slope=-1.0003 Random shuffle at each epoch: slope=-2.0103
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* |t uses more “information” in one epoch (by visiting each component)

* |t has smaller variance for one epoch

 However, what is a rigorous proof?
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A Brief History

Under strong structure, we can convert this problem into matrix inequality:
(Recht and Ré, 2012)

Assume the problem is quadratic: f;(x) = (a] x — v;)?

Then “RandomShuffle is better than SGD after one epoch” is true under

conjecture:
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Which we still don’t know how to prove yet ®
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 What about the more general situation?

* We can try to show with a better convergence bound!
 The hope is: prove a faster worst-case convergence rate of RandomShuffle

* A well-known fact: SGD converges with rate O (%) ;

« E[lxr—x* 171 <0 (3)
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* One of the recent breakthrough: (Gurblizbalaban, 2015)

* Asymptotically RandomShuffle has convergence rate O (T_12)
e But not sure what happen after finite epochs

* In contrast, there is a non-asymptotic result: (Shamir, 2016)

* RandomShuffle is no worse than SGD, with provably O (71,) convergence rate

e But cannot show that RandomShuffle is really faster

What happens in between?
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e Strongly convex, Lipschitz Hessian
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e Can we show a non-asymptotic bound better than O (;) ?E.g., O (T1+5)?

* |f we can, then everything is solved ©

°« ... unless we cannot ®

Theorem 3. Given the information of 1, L, G. Under the assumption of constant step sizes, no step
size choice for RANDOMSHUFFLE leads to a convergence rate o (%) forany T’ > n, if we do not
allow n to appear in the bound.
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Theorem 3. Given the information of i, L, G. Under the assumption of constant step sizes, no step
size choice for RANDOMSHUFFLE leads to a convergence rate o (%) forany T’ > n, if we do not
allow n to appear in the bound.

* We only consider the case when T = n, i.e., we run one epoch of the algorithm

* We prove the theorem with a counter-example:

* Recall function F(x) = % i)

(
2(x—b)A(x—b), iodd,
¢ Wesetfi(x)=<"

%(x +b)' A(x + b), ieven.
\

A and b to be determined later...
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e Step 1: Calculate the error

c E [lle — x|

| = {10 =700 = | + B[ IS 17Oy - yay || ]
\ J \ l

Y v
P Q
e Step 2: Simplify via eigenvector basis decomposition

12
+ P=3Y_ (1—-yW)¥ v, Q=v*Xi_ qiNE [[ZZ=1(—1)0(U(1 — )T ]
e Step 3: Construct a contradiction

- : . 1
* For contradiction, assume there is y dependent on T achieving convergence o (;)

yT

— =/11—_+0(1)

2—)//1l
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e Step 1: Calculate the error

c E [lle — x|
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P Q
e Step 2: Simplify via eigenvector basis decomposition

12
+ P=3Y_ (1—-yW)¥ v, Q=v*Xi_ qiNE [[ZZ=1(—1)0(U(1 — )T ]
e Step 3: Construct a contradiction

- : . 1
* For contradiction, assume there is y dependent on T achieving convergence o (;)
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What to do next?
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size choice for RANDOMSHUFFLE leads to a convergence rate o (%) for any T > n, if we do not
allow n to appear in the bound.
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* This means the best non-asymptotic rate we can hope is 0 (;)

Short Time: O (%) m—) | Long Time: O (T—12)

What happens in between?



What to do next?

Theorem 3. Given the information of 1, L, G. Under the assumption of constant step sizes, no step
size choice for RANDOMSHUFFLE leads to a convergence rate o (%) for any T > n, if we do not
allow n to appear in the bound.

. . . 1
* This means the best non-asymptotic rate we can hope is 0 (;)

Short Time: O (%) m— | Long Time: 0 (T_12)

What happens in between?

* Key step: introduce n into the bound

* The hope is if we can show bound like O (%), RandomShuffle behaves better©



Bounds dependent on n

For general second order differentiable functions with Lipschitz Hessian:

Theorem 2. Define constant C = max { %(LHLD +3LyG),12(1 + %)} So long as logT >

Cn, with step size n = %1, RANDOMSHUFFLE achieves convergence rate:

. 1 n?
Efler - 2**) < O( = + 75)-
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Bounds dependent on n

* On one hand, RandomShuffle converges with

1 n3
O TZ_I_T3

* On the other hand, SGD converges with

°(7)

* So the take away is:

RandomShuffle is provably better than SGD after O(1/n) epochs!
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e Strongly convex, Lipschitz Hessian

e Sparse data
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Sparse setting

A sparse problem can be written as:
n
FGO = ) fixe)
i=1

Where each ¢; is a subset of all the dimensions [d]
Consider a graph with n nodes, with edge (i,j) ife; Ne; = @

Define the sparsity level of the problem:
max |{€] - € N ej - @}l

__1=<isn

p_

n
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* We have the following improved bound for sparse problem:
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Sparse setting

* A fact about sparsity:

1

—<p<1
n_p_

* We have the following improved bound for sparse problem:

Theorem 4. Define constant C = max {%(LHLD +3LpG), 12(1 + ﬁ)} So long as logT

Cn, with step size 1 = %;‘1, RANDOMSHUFFLE achieves convergence rate:

i 1 p2n3
Elllor - o*|*) < O( =5 + 75 )

>

1 1

* As a corollary, whenp = 0 ( ), thereisa O (—2) convergence rate!
T

n




Summary of results

We analyze RandomShuffle in the following settings:
e Strongly convex, Lipschitz Hessian
e Sparse data

* Vanishing variance
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When Variance Vanishes

* When the variance vanishes at the optimality
fi(x*) =0, Vi

e Given n pairs of numbers 0 < u; < L;, a optimal solution x* € R% and an

initial upper bound on distance R
* Avalid problem is defined as n functions and an initial point x, such that:
* f;is u;-strongly convex, L;-Lipschitz continuous
¢ fl(x") =0

* [ xg—x*lI;, <R



When Variance Vanishes

Theorem 5. Given constants (p1,L1), -+, (fn, Ly ) such

that 0 < n; < L;, a dimension d, a point r* € R and an
upper bound of initial distance ||xy — z*||, < R. Let P be

the set of valid problems. For step size v < mln{
and any I" > 1, there is

Lz+ z}

max E [||XRS—:E || ] max E [||XSGD—;I;*||2].
PcP EP




When Variance Vanishes

Theorem 5. Given constants (p1,L1), -+, (fn, Ly ) such

that 0 < u; < L;, a dimension d, a point x™* € R? and an
upper bound of initial distance ||xo — x*||, < R. Let P be

the set of valid problems. For step size v < min{ L-—2|—u- }
7] (2 (2
and any I" > 1, there is

PeP

max E [||XR5 _ :1;*||2] < maxE [||XSGD _ a;*||2] .
PeP

RandomShuffle is provably better than SGD after ANY number of iterations!




Thanks!



