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Wasserstein barycenter

ν̂ = arg min
ν∈P2(Ω)

m∑
i=1
W(µi, ν),

whereW(µ, ν) is the Wasserstein distance between measures µ and ν on Ω.

WB is efficient in machine learning problems with geometric data, e.g. template
image reconstruction from random sample:

Figure: Images from [Cuturi & Doucet, 2014]
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Motivation

We consider a set of discrete measures p1, . . . , pm ∈ Sn(1).

Main question: How much work is it needed to find their barycenter q̂ with
accuracy ε?

1
m

m∑
l=1
W(pl, q̂)− min

q∈Sn(1)

1
m

m∑
l=1
W(pl, q) ≤ ε

Beyond that challenges are:

Fine discrete approximation for continuous ν and µi⇒ large n ,

Large amount of data⇒ large m ,

Data produced and stored distributedly (e.g. produced by a network of sensors).
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Background

Following [Cuturi & Doucet, 2014], we use entropic regularization.

min
q∈Sn(1)

1
m

m∑
l=1
Wγ(pl, q) = min

q∈Sn(1),
πl∈Π(pl,q), l=1,...,m

1
m

m∑
l=1

{
〈πl, Cl〉+γH(πl)

}
, (1)

H(π) =
∑n

i,j=1 πij (ln πij − 1) = 〈π, ln π − 11T〉.

Π(p, q) = {π ∈ Rn×n
+ : π1 = p, πT1 = q}.

Cij — transport cost from point zi to yj of the supports.

Cost of findingW0(p, q)

Sinkhorn’s algorithm O
(
n2

ε2

)
, [Altschuler, Weed, Rigollet, NeurIPS’17; Dvurechensky, Gasnikov,

Kroshnin, ICML’18]

Accelerated Gradient Descent O
(

min
{
n2.5

ε ,
n2

ε2

})
, [Dvurechensky, Gasnikov, Kroshnin,

ICML’18; Lin, Ho, Jordan, ICML’19]
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Background

Algorithms for barycenter

min
q∈Sn(1)

1
m

m∑
l=1
Wγ(pl, q) = min

q∈Sn(1),
πl∈Π(pl,q), l=1,...,m

1
m

m∑
l=1

{
〈πl, Cl〉 + γH(πl)

}
.

Sinkhorn + Gradient Descent [Cuturi, Doucet, NeurIPS’13]

Iterative Bregman Projections [Benamou et al., SIAM J Sci Comp’15]

(Accelerated) Gradient Descent [Cuturi, Peyre, SIAM J Im Sci’16; Dvurechensky
et al, NeurIPS’18; Uribe et al., CDC’18].

Stochastic Gradient Descent [Staib et al., NeurIPS’17; Claici, Chen, Solomon,
ICML’18]

Question of complexity was open.
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Contributions

Prove that to find an ε approximation of the γ-regularized WB

Iterative Bregman Projections (IBP) needs 1
γε iterations;

Accelerated Gradient descent (AGD) needs
√

n
γε iterations.

Setting γ = Θ (ε/lnn) allows to find an ε-approximation for the non-regularized
WB with arithmetic operations complexity

Õ
(
mn2

ε2

)
for IBP ,

Õ
(
mn2.5

ε

)
for AGD .

We propose a proximal-IBP algorithm to solve the issue of instability of IBP and
AGD caused by small gamma.
We discuss scalability of the algorithms via their distributed versions.

IBP can be realized distributedly in a centralized architecture (master/slaves),
AGD can be realized in a general decentralized architecture.
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Iterative Bregman Projections

min
πl1=pl, π

T
l 1=πT

l+11
πl∈Rn×n

+ , l=1,...,m

1
m

m∑
l=1

{
〈πl, Cl〉 + γH(πl)

}
Dual problem:

min
u,v

1
m

∑m
l=1 vl=0

f (u, v) := 1
m

m∑
l=1

{
〈1, Bl(ul, vl)1〉 − 〈ul, pl〉

}
,

u = [u1, . . . , um], v = [v1, . . . , vm], ul, vl ∈ Rn,
Bl(ul, vl) := diag (eul) exp (−Cl/γ) diag (evl).
IBP is equivalent to alternating minimization for the dual problem.

ut+1
l := ln pl − lnKle

vt
l , vt+1 := vt

vt+1
l := 1

m

∑m
k=1 lnKT

k e
ut

k − lnKT
l e

ut
l , ut+1 := ut
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Accelerated Gradient Descent

Define symmetric p.s.d. matrix W̄ s.t. Ker(W̄) = span(1).
For W := W̄ ⊗ In and q = (qT

1 , . . . , q
T
m)T it holds

q1 = · · · = qm ⇐⇒
√
Wq = 0

Equivalent form of problem (1)
max

q1,...,qm∈S1(n)√
Wq=0

− 1
m

m∑
l=1
Wγ,pl

(ql).

Dual problem

min
λ∈Rmn

W∗γ(λ) := 1
m

m∑
l=l
W∗γ,pl

(
λ̄l︷ ︸︸ ︷

m[
√
Wλ]l).

Run (A)GD for the dual and reconstruct the primal solution

λ̄k+1
l = λ̄kl −

αk+1
m

∑m
j=1Wlj∇W∗γ,pj

(λ̄k+1
j )

qk+1
l = 1

Ak+1

∑k+1
i=0 αiqi(λ̄k+1

l ), where
ql(·) = ∇W∗γ,pl

(·)
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Thank you!

Welcome to poster #203,
Pacific Ballroom.
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