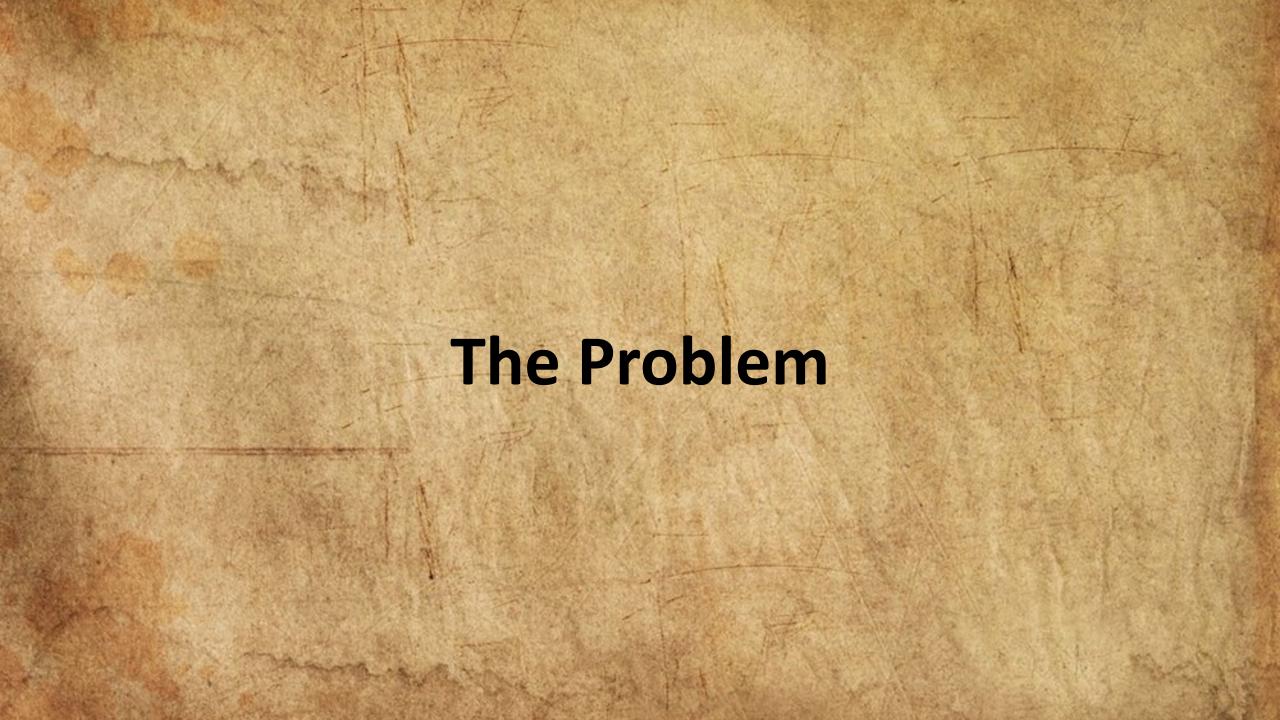
ICML | 2019

Thirty-sixth International Conference on Machine Learning

Xun Qian

Zheng Qu

Peter Richtárik



$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

$$f(x)$$

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\mathrm{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

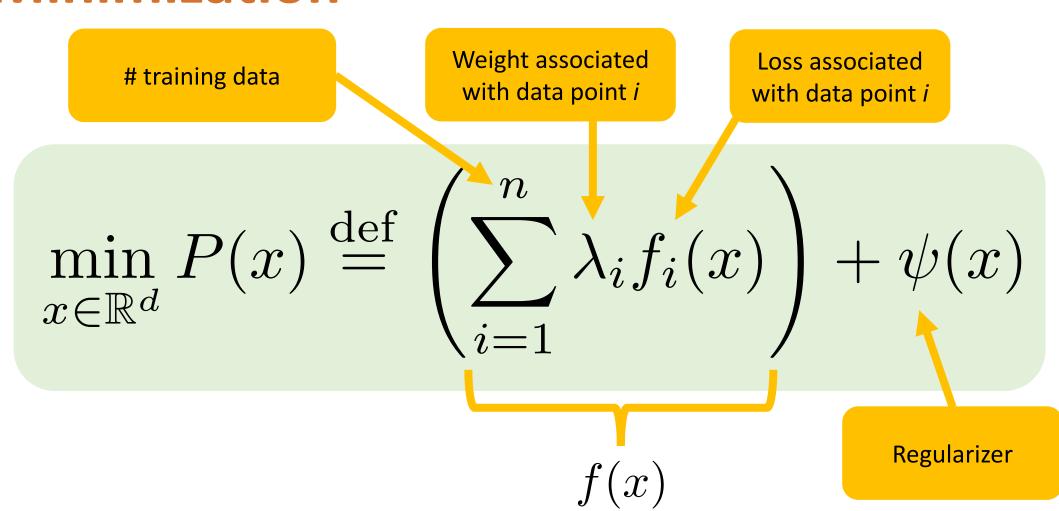
$$f(x)$$
Regularizer

training data

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

f(x)

Regularizer



Weight associated Loss associated # training data with data point i with data point i $\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=}$ **Parameters** Regularizer describing the model

In iteration k, we have x^k available

- In iteration k, we have x^k available
- Sample a random set $S_k \subseteq \{1, 2, \dots, n\}$

- In iteration k, we have x^k available
- Sample a random set $S_k \subseteq \{1, 2, \dots, n\}$
- Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only

- In iteration k, we have x^k available
- Sample a random set $S_k \subseteq \{1, 2, \dots, n\}$
- Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
- Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$

- In iteration k, we have x^k available
- Sample a random set $S_k \subseteq \{1, 2, \dots, n\}$
- Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
- Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$
- Take a stochastic gradient descent step to obtain x^{k+1}

- In iteration k, we have x^k available
- Sample a random set $S_k \subseteq \{1, 2, \dots, n\}$
- Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
- Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$
- Take a stochastic gradient descent step to obtain x^{k+1}

Arbitrary sampling paradigm (R. & Takáč 2013): want to be able to sample from **any** distribution over all 2^n subsets of $\{1,2,...,n\}$ $p_i \stackrel{\mathrm{def}}{=} \operatorname{Prob}(i \in S_k)$

 $p_i > 0 \text{ for all } i = 1, 2, \dots, n$

GD

$$S_k = \{1, 2, 3\}$$
 with prob 1

GD

$$S_k = \{1, 2, 3\}$$
 with prob 1

SAGA

$$S_k = \{1\}$$
 with prob 1/3
 $S_k = \{2\}$ with prob 1/3
 $S_k = \{3\}$ with prob 1/3

GD

$$S_k = \{1, 2, 3\}$$
 with prob 1

SAGA

$$S_k = \{1\}$$
 with prob 1/3
 $S_k = \{2\}$ with prob 1/3
 $S_k = \{3\}$ with prob 1/3

SAGA with nonuniform sampling

$$S_k = \{1\}$$
 with prob p_1
 $S_k = \{2\}$ with prob p_2
 $S_k = \{3\}$ with prob p_3

GD

$$S_k = \{1, 2, 3\}$$
 with prob 1

SAGA

$$S_k = \{1\}$$
 with prob 1/3
 $S_k = \{2\}$ with prob 1/3
 $S_k = \{3\}$ with prob 1/3

SAGA with nonuniform sampling

$$S_k = \{1\}$$
 with prob p_1
 $S_k = \{2\}$ with prob p_2
 $S_k = \{3\}$ with prob p_3

Minibatch SAGA (with 2-nice sampling)

$$S_k = \{1, 2\}$$
 with prob 1/3
 $S_k = \{2, 3\}$ with prob 1/3
 $S_k = \{3, 1\}$ with prob 1/3

GD

$$S_k = \{1, 2, 3\}$$
 with prob 1

SAGA

$$S_k = \{1\}$$
 with prob 1/3
 $S_k = \{2\}$ with prob 1/3
 $S_k = \{3\}$ with prob 1/3

SAGA with nonuniform sampling

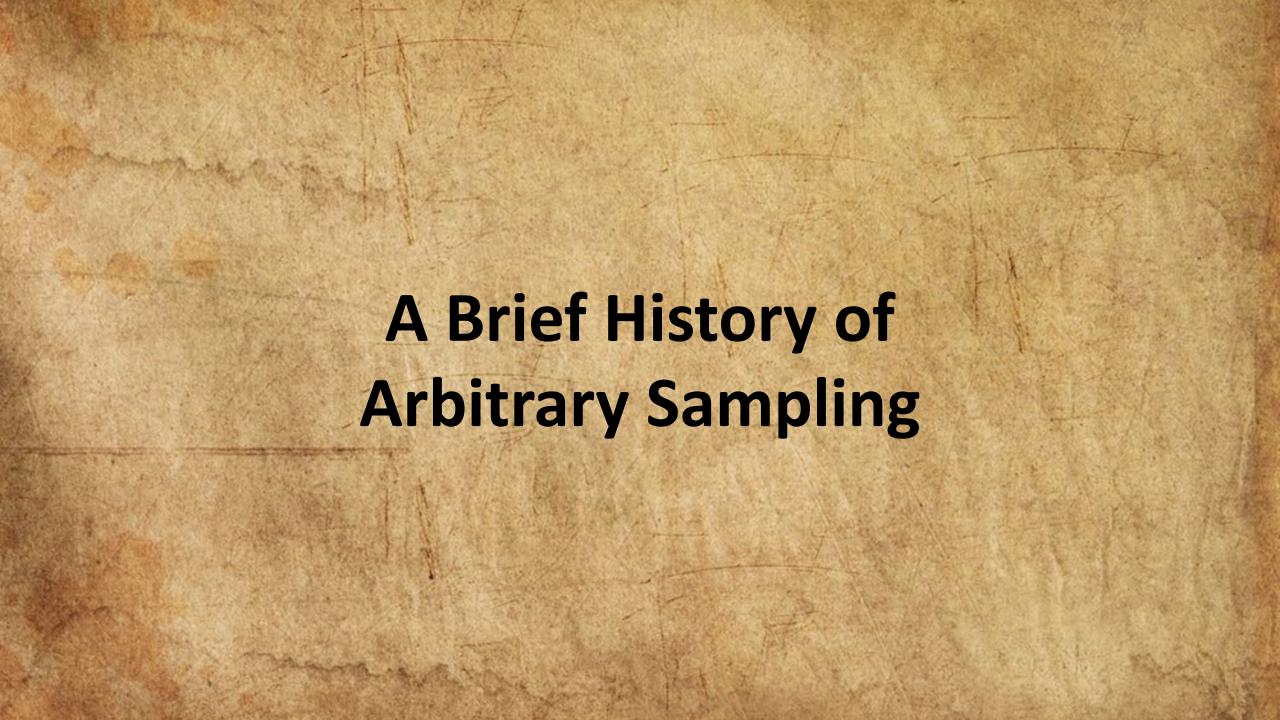
$$S_k = \{1\}$$
 with prob p_1
 $S_k = \{2\}$ with prob p_2
 $S_k = \{3\}$ with prob p_3

Minibatch SAGA (with 2-nice sampling)

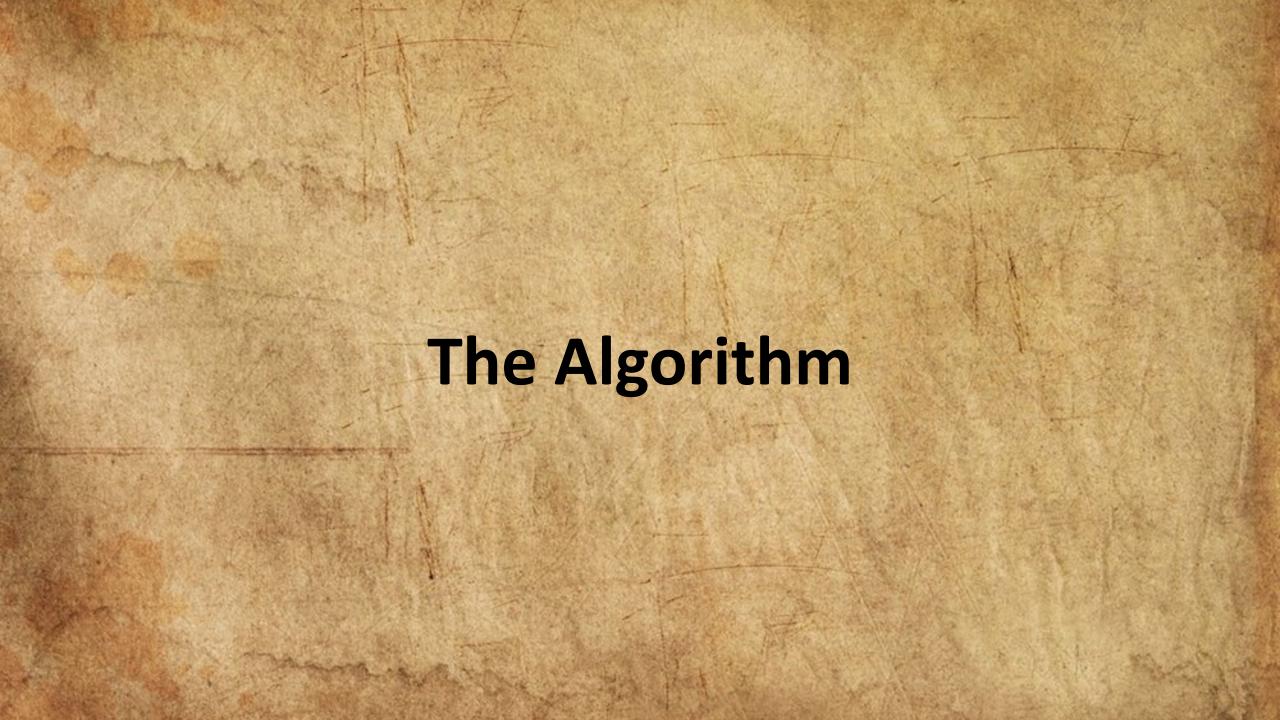
$$S_k = \{1, 2\}$$
 with prob 1/3
 $S_k = \{2, 3\}$ with prob 1/3
 $S_k = \{3, 1\}$ with prob 1/3

Interpolation between GD and SAGA

$$S_k = \{1, 2, 3\}$$
 with prob 1/2
 $S_k = \{1\}$ with prob 1/6
 $S_k = \{2\}$ with prob 1/6
 $S_k = \{3\}$ with prob 1/6



#	Paper	Algorithm	Comment	
1	R. & Takáč (OL 2016; arXiv 2013) On optimal probabilities in stochastic coordinate descent methods	NSync	Arbitrary sampling (AS) first introduced Analysis of coordinate descent under strong convexity	
2	Qu, R. & Zhang (NeurIPS 2015) Quartz: Randomized dual coordinate ascent with arbitrary sampling	QUARTZ	First AS SGD method for min P Primal-dual stochastic fixed point method; variance reduced	
3	Csiba & R. (arXiv 2015) Primal method for ERM with flexible mini-batching schemes and non-convex losses	Dual-free SDCA	First primal-only AS SGD method for min P Variance-reduced	
4	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling I: algorithms and complexity	ALPHA	First accelerated coordinate descent method with AS Analysis for smooth convex functions	
5	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling II: expected separable overapproximation		First dedicated study of ESO inequalities $\mathbb{E}_{\mathbf{S}}\left[\left\ \sum_{i\in\mathbf{S}}\mathbf{A}_ih_i\right\ ^2\right] \leq \sum_{i=1}^n p_i v_i \left\ h_i\right\ ^2$ needed for analysis of AS methods	
6	Chambolle, Ehrhardt, R. & Schoenlieb (SIOPT 2018) Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications	SPDHGM	Chambolle-Pock method with AS	
7	Hanzely, Mishchenko & R. (NeurIPS 2018) SEGA: Variance reduction via gradient sketching	SEGA	Variance-reduce coordinate descent with AS	
8	Hanzely & R. (AISTATS 2019) Accelerated coordinate descent with arbitrary sampling and best rates for minibatches	ACD	First accelerated coordinate descent method with AS Analysis for smooth strongly convex functions Importance sampling for minibatches	
9	Horváth & R. (ICML 2019) Nonconvex variance reduced optimization with arbitrary sampling	SARAH, SVRG, SAGA	First non-convex analysis of an AS method First optimal mini-batch sampling	
10	Gower, Loizou, Qian, Sailanbayev, Shulgin & R. (ICML 2019) SGD: general analysis and improved rates	SGD-AS	First AS variant of SGD (without variance reduction) Optimal minibatch size	
11	Qian, Qu & R. (ICML 2019) SAGA with arbitrary sampling	SAGA-AS	First AS variant of SAGA	



The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

Arbitrary Sampling

Sample fresh
$$S_k \subseteq \{1, 2, \dots, n\}$$

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

1

Sample fresh $S_k \subseteq \{1, 2, \dots, n\}$

 $\mathbf{J}_{:i}^{k+1} = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ \mathbf{J}_{:i}^k & i \notin S_k \end{cases} \qquad \mathbf{J}_{:i}^{\mathbf{Jacobian Sketch, i.e., a random matrix}} \\ \mathbf{J}_{:i}^{k+1} \approx \mathbf{G}(x^k) \stackrel{\mathrm{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n} \end{cases}$

$$i \in S_k$$

$$i \notin S$$

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

$$\mathbf{J}^{k+1} \approx \mathbf{G}(x^k) \stackrel{\text{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n}$$

Sample fresh $S_k \subseteq \{1,2,\ldots,n\}$

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

 $\mathbf{J}_{:i}^{k+1} = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ \mathbf{J}_{:i}^k & i \notin S_k \end{cases}$ Jacobian Sketch, i.e., a random matrix approximating the Jacobian: $\mathbf{J}_{:i}^{k+1} \approx \mathbf{G}(x^k) \stackrel{\mathrm{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n}$

$$\mathbf{J}^{k+1} pprox \mathbf{G}(x^k) \stackrel{\mathrm{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n}$$

Use \mathbf{J}^{k+1} , \mathbf{J}^k to build an unbiased estimator g^k of $\nabla f(x^k)$

The Problem

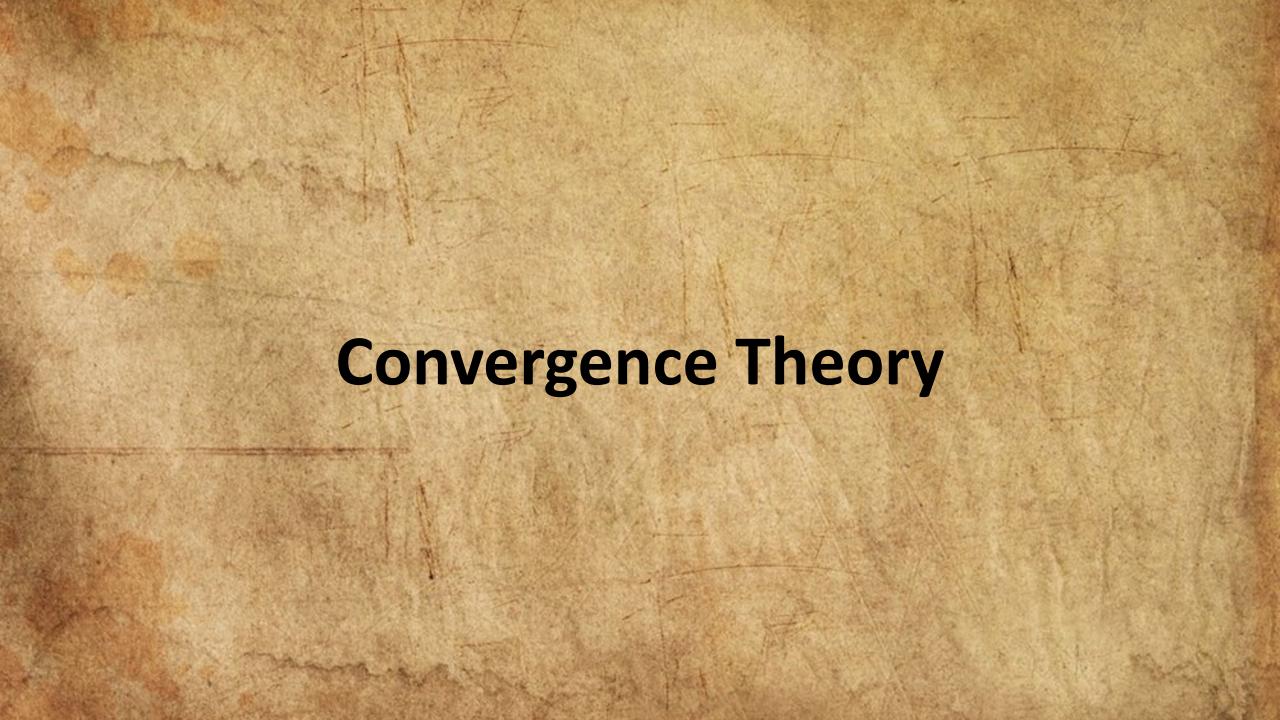
$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x)$$

- Sample fresh $S_k \subseteq \{1, 2, \dots, n\}$
- $\mathbf{J}_{:i}^{k+1} = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ \mathbf{J}_{:i}^k & i \notin S_k \end{cases}$ Jacobian Sketch, i.e., a random matrix approximating the Jacobian: $\mathbf{J}_{:i}^{k+1} \approx \mathbf{G}(x^k) \stackrel{\mathrm{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n}$

$$\mathbf{J}^{k+1} pprox \mathbf{G}(x^k) \stackrel{\mathrm{def}}{=} \left[\nabla f_1(x^k), \cdots, \nabla f_n(x^k) \right] \in \mathbb{R}^{d \times n}$$

- Use \mathbf{J}^{k+1} , \mathbf{J}^k to build an unbiased estimator g^k of $\nabla f(x^k)$

$$x^{k+1} = \operatorname{prox}_{\alpha\psi} \left(x^k - \alpha g^k \right) + \underbrace{ \begin{array}{c} \operatorname{Proximal SGD step with fixed step size} \\ \operatorname{prox}_{\psi}(x) \stackrel{\mathrm{def}}{=} \arg \min_{y} \left\{ \frac{1}{2} \|y - x\|^2 + \psi(y) \right\} \end{array}}_{}$$



Convergence Theory

$$\mathbb{E}_{S}\left[\left\|\mathbf{M}\operatorname{Diag}\left(\theta_{S}\right)\mathbf{I}_{S}\lambda\right\|^{2}\right] \leq \sum_{i=1}^{n} \mathcal{A}_{i}\lambda_{i}^{2}\left\|\mathbf{M}_{:i}\right\|^{2} + \mathcal{B}\|\mathbf{M}\lambda\|^{2}$$

Lyapunov function:

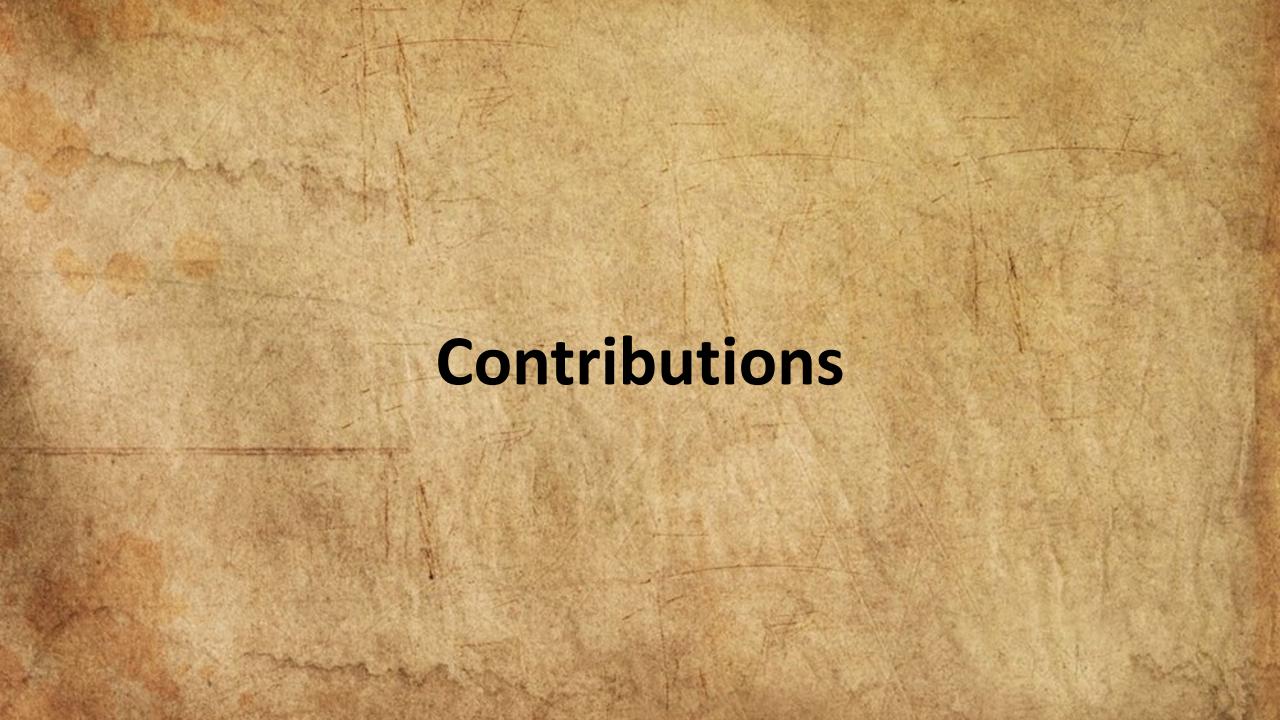
$$\Psi^{k} \stackrel{\text{def}}{=} \left\| x^{k} - x^{*} \right\|^{2} + 2\alpha \sum_{i=1}^{n} \sigma_{i} \mathcal{A}_{i} \lambda_{i}^{2} \left\| \mathbf{J}_{:i}^{k} - \nabla f_{i} \left(x^{*} \right) \right\|^{2}$$

Regime		Arbitrary sampling	Thm
Smooth $\psi \equiv 0$ f_i is L_i -smooth, f is μ -strongly convex	$\max \left\{ \max_{1 \le i \le n} \right.$	$\left\{\frac{1}{p_i} + \frac{4(1+\mathcal{B})L_i\mathcal{A}_i\lambda_i}{\mu}\right\}, \frac{2\mathcal{B}(1+1/\mathcal{B})L}{\mu}\right\} \log\left(\frac{1}{\epsilon}\right)$	3.3
Nonsmooth P satisfies μ -growth condition (19) and Assumption 4.3 $f_i(x) = \phi_i(\mathbf{A}_i^{\top} x), \phi_i \text{ is } 1/\gamma\text{-smooth}, f \text{ is } L\text{-smooth}$	$\left(2 + \max_{i} \right)$	$\mathbf{x} \left\{ \frac{6L}{\mu}, 3 \max_{1 \le i \le n} \left\{ \frac{1}{\mathbf{p}_i} + \frac{4\mathbf{v}_i \lambda_i}{\mathbf{p}_i \mu \gamma} \right\} \right\} \right) \log \left(\frac{1}{\epsilon} \right)$	4.4
Nonsmooth ψ is μ -strongly convex $f_i(x) = \phi_i(\mathbf{A}_i^{\top} x), \phi_i$ is $1/\gamma$ -smooth	1	$\max_{1 \le i \le n} \left\{ 1 + \frac{1}{p_i} + \frac{3v_i \lambda_i}{p_i \mu \gamma} \right\} \log \left(\frac{1}{\epsilon} \right)$	4.5

Table 1. Iteration complexity results for SAGA-AS. We have $p_i := \mathbb{P}(i \in S)$, where S is a sampling of subsets of [n] utilized by SAGA-AS. The key complexity parameters A_i , B, and v_i are defined in the sections containing the theorems.

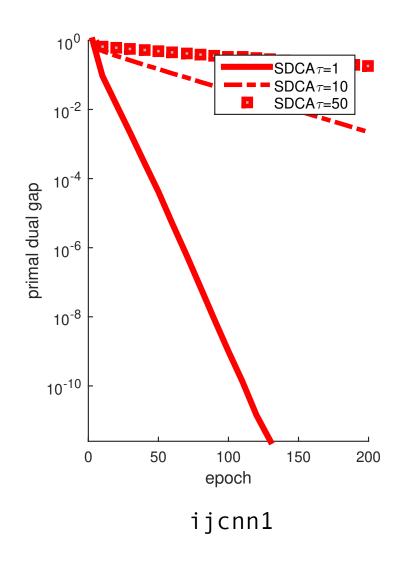
Expected Separable Over-approximation (ESO):

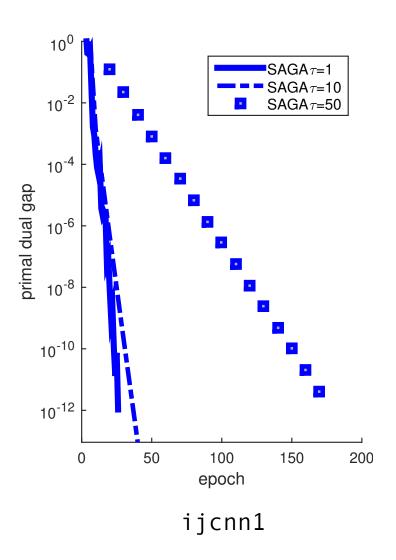
$$\mathbb{E}_{S}\left[\left\|\sum_{i\in S}\mathbf{A}_{i}h_{i}
ight\|^{2}
ight]\leq\sum_{i=1}^{n}p_{i}v_{i}\left\|h_{i}
ight\|^{2}\qquad p_{i}\overset{\mathrm{def}}{=}\operatorname{Prob}(i\in S_{k})$$



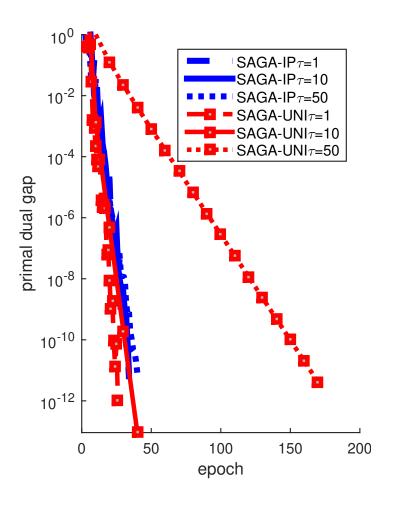
	SAGA (Defazio et al 2014)	QUARTZ (Qu et al 2015)	JacSketch (Gower et al 2018)	SAGA-AS (THIS WORK)
PRIMAL / DUAL	Primal	Primal-dual	Primal	Primal
SAMPLING	Uniform sampling of of single data points	Arbitrary sampling (first AS method for min <i>P</i>)	A general sketching mechanism, but does not cover arbitrary sampling	Arbitrary sampling
IMPORTANCE SAMPLING?	NO	YES	YES (first SAGA-IS, but not for minibatches)	YES (also for minibatches)
REGULARIZER	Support for any convex regularizer	Support for strongly convex regularizer	No support for a regularizer	Support for any convex regularizer
RATE	Linear	Linear	Linear	Linear (same or better)
ASSUMPTIONS	Each f _i strongly convex	strongly convex regularizer	Each f_i strongly convex	P satisfying quadratic growth
HANDLING BIAS	Scaling	Built in	Bias-correcting random variable	Bias-correcting random vector

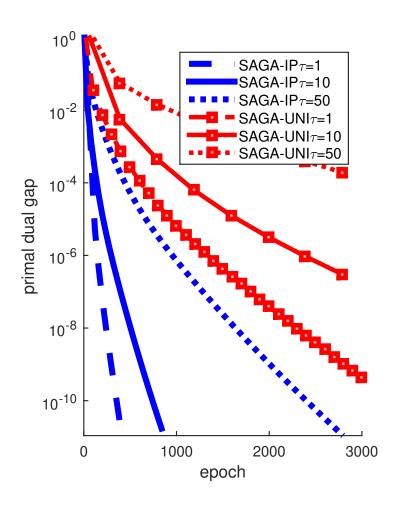
SDCA vs SAGA





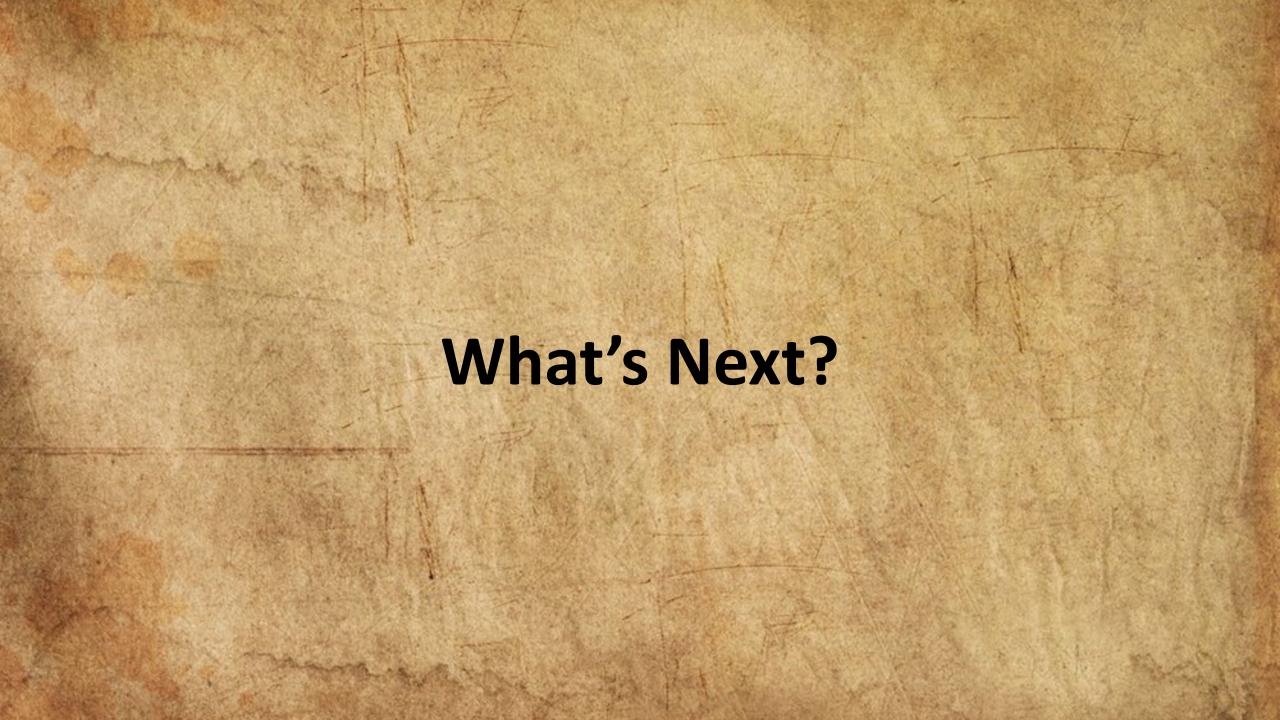
Uniform vs Importance Sampling





ijcnn1

w8a



Xun Qian¹ Zheng Qu ² Peter Richtárik^{1, 3, 4}

¹KAUST ²University of Hong Kong

³University of Edinburgh ⁴Moscow Institute of Physics and Technology

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \lambda_i f_i(x) \right) + \psi(x), \quad (1)$$

where $f \stackrel{\text{def}}{=} \sum_{i=1}^{n} \lambda_i f_i(x)$, f_i are smooth and convex, $\lambda_i > 0$ are weights, and $\psi : \mathbb{R}^{d} \xrightarrow{i-1} \mathbb{R} \cup \{+\infty\}$ is closed and convex.

Sampling

Sampling: A random set valued mapping S with values being subsets of $\{1, \ldots, n\}$. A sampling is uniquely defined by assigning probabilities to all 2^n subsets of $\{1, \ldots, n\}$. Let $\tau \stackrel{\text{def}}{=} \mathbb{E}|S|$ be the expected size of S, and define

$$p_i \stackrel{\text{def}}{=} \text{Prob}(i \in S), \quad i \in \{1, \dots, n\}.$$

A sampling is called **proper** if $p_i > 0$ for all i. For $C \subseteq \{1, ..., n\}$, let $p_C \stackrel{\text{def}}{=} \text{Prob}(S = C).$

Bias-correcting random vector: vector $\theta_S = (\theta_S^1, \dots, \theta_S^n) \in \mathbb{R}^n$ with the

$$\mathbb{E}\left[\text{Diag}(\theta_S)\mathbf{I}_S e\right] = e, \text{ i.e., } \mathbb{E}\left[\theta_S^i \mathbf{1}_{i \in S}\right] = 1, \forall i,$$
 (2)

where

- e: n × 1 vector of all ones
- I: $n \times n$ identity matrix
- I_S : $n \times n$ matrix with ones in places (i, i) for $i \in S$
- $1_{i \in S}$: indicator random variable of the event $i \in S$, i.e.,: $1_{i \in S} = 1$ if $i \in S$ and $1_{i \in S} = 0$ if $i \notin S$

Algorithm

Prox operator: $\operatorname{prox}_{\alpha}^{\psi}(x) \stackrel{\text{def}}{=} \arg \min \left\{ \frac{1}{2\alpha} ||x - y||^2 + \frac{1}{2\alpha} ||x - y||^2 \right\}$ Gradient matrix: $\mathbf{G}(x) \stackrel{\text{def}}{=} [\nabla f_1(x), \cdots, \nabla^f]$

Algorithm 1: SAGA with Arbitra

Initialize: $x^0 \in \mathbb{R}^d$, $\mathbf{J}^0 \in \mathbb{R}^d$ Parameters: arbit θ_S , stepsize $\alpha >$

for k = 1, 2, ...Sample fresh $S_k \subseteq$ $\mathbf{J}^{k+1} = \mathbf{J}^k + (\mathbf{G}(x^k))$ $g^k = \mathbf{J}^k \lambda + (\mathbf{G}(x^k) -$

 $x^{k+1} = \operatorname{prox}_{\alpha}^{\psi} (x^k - \alpha_k)$

Smoo

Assumptions:

- f_i is convex and L_i-smooth,
- f is μ -strongly convex and L-sm. ...
- There exist constants $A_i \ge 0$ and $0 \le B \le 1$ such that for any matrix $\mathbf{M} \in \mathbb{R}^{d \times n}$

$$\mathbb{E}\left[\|\mathbf{M}\text{Diag}(\theta_S)\mathbf{I}_S\lambda\|^2\right] \leq \sum_{i=1}^n \mathcal{A}_i\lambda_i^2\|\mathbf{M}_{:i}\|^2 + \mathcal{B}\|\mathbf{M}\lambda\|^2$$

Lyapunov function:

$$\Psi^k \stackrel{\text{def}}{=} \|x^k - x^*\|^2 + 2\alpha \sum_{i=1}^n \sigma_i \mathcal{A}_i \lambda_i^2 \|\mathbf{J}_{:i}^k - \nabla f_i(x^*)\|^2,$$

where $\sigma_i = \frac{1}{4(1+B)I_s(A:n_s)_i}$ and x^* is a solution of (1)

Convergence Result $(\mathbb{E}[\Psi^k] \leq \epsilon \cdot \mathbb{E}[\Psi^0])$

$$\begin{split} & \mu \text{ is known: } \alpha = \min_{l} \left\{ \frac{1}{\mu + 4(l + \mathcal{B})L_{l}A_{l}\lambda_{p}}, \frac{\mathcal{B}^{-1}}{2(l + 1/\mathcal{B})L} \right\} \\ & k \geq \max_{l} \left\{ \frac{1}{\mu_{l}} + \frac{4(l + \mathcal{B})L_{l}A_{l}\lambda_{l}}{\mu}, \frac{2\mathcal{B}(1 + \frac{1}{\mathcal{B}})L}{\mu} \right\} \log \left(\frac{1}{\epsilon} \right). \end{split}$$

 μ is unknown: $\alpha = \min_i \left\{ \frac{p_i}{8(1+B)L_1A_2A_2}, \frac{B^{-1}}{2(1+1/B)L_2} \right\}$

$$k \ge \max_{i} \left\{ \frac{2}{p_{i}}, \frac{8(1+\mathcal{B})L_{i}\mathcal{A}_{i}\lambda_{i}}{\mu}, \frac{2\mathcal{B}(1+\frac{1}{\mathcal{B}})L}{\mu} \right\} \log\left(\frac{1}{\epsilon}\right).$$

Interface For Sampling

- Proper sampling: $A_i = \beta_i \stackrel{\text{def}}{=} \sum_{C \subset [n]: i \in C} p_C |C| (\theta_C^i)^2$, B = 0.
- τ -nice sampling $(\theta_S^i = \frac{1}{n})$: $A_i = \frac{n}{\tau} \cdot \frac{n-\tau}{n-1}$, $B = \frac{n(\tau-1)}{\tau(n-1)}$.
- Independent sampling $(\theta_S^i = \frac{1}{n})$: $A_i = \frac{1}{n} 1$, B = 1.

Optimal Bias-Correcting Random Vector

Let $\Theta(S)$ be the collection of all bias-correcting random ated with sampling S, i.e., $\mathbb{E}[\theta_S \mathbf{I}_S e] = e$. Let \mathbb{F}^{ir}

Let S be a proper \circ

...ce Sampling

the expected minibatch size, and $\bar{L} \stackrel{\text{def}}{=} \sum_{i \in [n]} L_i \lambda_i$. he independent sampling with $\theta_S^i = 1/p_i$. Let

$$q_i = \frac{(\mu + 8L_i\lambda_i)\tau}{\sum_{i \in [n]}(\mu + 8L_i\lambda_i)}.$$

By choosing $\min\{q_i, 1\} \le p_i \le 1$ such that $\sum_{i \in [n]} p_i = \tau$, the iteration complexity becomes:

$$\max \left\{ \frac{n}{\tau} + \frac{8\bar{L}}{\mu\tau}, \frac{4L}{\mu} \right\} \log \left(\frac{1}{\epsilon} \right). \tag{3}$$

Linear speedup: When $\tau \leq \frac{n\mu + 8\bar{L}}{4L}$, (3) becomes

$$\left(\frac{n}{\tau} + \frac{8\bar{L}}{\mu\tau}\right) \log\left(\frac{1}{\epsilon}\right)$$
,

which yields linear speedup with respect to τ . When $\tau \ge \frac{n\mu + 8\bar{L}}{4L}$, (3)

$$\frac{4L}{\mu} \log \left(\frac{1}{\epsilon}\right)$$
.

Nonsmooth Case (strongly convex)

Assumptions:

- $f_i(x) = \phi_i(\mathbf{A}_i^\top x)$
- ϕ is $1/\gamma$ -smooth and convex
- ψ_i is μ-strongly convex
- Choose $\theta_{\varsigma}^i = 1/p_i$
- Let v_i satisfy the ESO inequality

$$\mathbb{E}_{S}\left[\left\|\sum_{i \in S} \mathbf{A}_{i} h_{i}\right\|^{2}\right] \leq \sum_{i=1}^{n} p_{i} v_{i} \|h_{i}\|^{2}$$

Lyapunov function:

$$\Psi^k \stackrel{\text{def}}{=} ||x^k - x^*||^2 + \alpha \sum_{i=1}^n$$

.ungly convex)

⊿n and convex

$_{\perp}/p_i$

- ESO inequality
- Nullspace consistency: For any $x^*, y^* \in \mathcal{X}^*$ we have

$$\mathbf{A}_{i}^{\top}x^{*} = \mathbf{A}_{i}^{\top}y^{*}, \forall i \in [n],$$

where $\mathcal{X}^* \stackrel{\text{def}}{=} \arg \min \{P(x) : x \in \mathbb{R}^d\}.$

• Quadratic functional growth condition: there is a constant $\mu > 0$

$$P(x^k) - P^* \geq \frac{\mu}{2} \|x^k - [x^k]^*\|^2, w.p.1, \ \forall k \geq 1,$$

where $[x]^* = \arg\min\{\|x - y\| : y \in \mathcal{X}^*\}$, for the sequence $\{x^k\}$ produced by the Algorithm.

Lyapunov function:

$$\boldsymbol{\Psi}^k \stackrel{\text{def}}{=} \|\boldsymbol{x}^k - [\boldsymbol{x}^k]^*\|^2 + \alpha \sum_{i=1}^n \sigma_i \frac{v_i}{p_i} \lambda_i^2 \|\boldsymbol{\alpha}_i^k - \nabla \phi_i(\mathbf{A}_i^\top \boldsymbol{x}^*)\|^2,$$

where $\sigma_i = \gamma/2v_i\lambda_i$

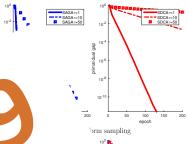
Convergence Result ($\mathbb{E}[\Psi^k] < \epsilon \cdot \mathbb{E}[\Psi^0]$)

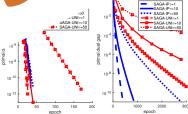
$$\begin{array}{l} \mu \text{ is known: } \alpha = \min \left\{ \frac{2}{3} \min_{1 \leq i \leq n} \frac{p_i}{p_i + 4n_i \lambda_i / \gamma^2}, \frac{1}{31} \right\} \\ k \geq \left(2 + \max \left\{ \frac{6L}{\mu_i}, 3 \max_i \left(\frac{1}{p_i}, \frac{4\nu_i \lambda_i}{p_i \mu \gamma} \right) \right\} \right) \log \left(\frac{1}{\epsilon} \right). \end{array}$$

 μ is unknown: $\alpha = \min \left\{ \min_{1 \le i \le n} \frac{p_i}{12p_i \lambda_i/\gamma}, \frac{1}{3L} \right\}$

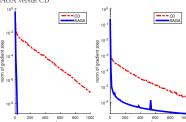
$$k \geq \left(2 + \max\left\{\frac{6L}{\mu}, \max_i \left\{\frac{24v_i\lambda_i}{\mu p_i\gamma}, \frac{2}{p_i}\right\}\right\}\right) \log\left(\frac{1}{\epsilon}\right)$$

Numerical Results





3. SAGA versus CD



References

[1] Shai Shalev-Shwartz and Tong Zhang.

Stochastic dual coordinate ascent methods for regularized loss. Journal of Machine Learning Research, 14(1):567-599, 2013.

[2] Zheng Qu, Peter Richtárik, and Tong Zhang.

Quartz: Randomized dual coordinate ascent with arbitrary sampling. In Advances in Neural Information Processing Systems 28, pages 865–873.

[3] R. M. Gower, P. Richtárik, and F. Bach.

Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching. arXiv Preprint arXiv: 1805.02632, 2018.

[4] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.

SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems 27, 2014.

