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SGD with Arbitrary Sampling

k available

In iteration £, we have x
Sample a random set S, C {1,2,...,n}

Compute the gradients V f;(2*) for i € S only
Approximate the gradient V f(z*) using {V fi(x®)

Take a stochastic gradient descent step to obtain x

:iESk}

k+1



SGD with Arbitrary Sampling

Arbitrary sampling paradigm (R.
& Takac 2013): want to be able
to sample from any distribution
over all 2" subsets of {1,2, ..., n}

k: .
available p; & Prob(i € S))

In iteration £, we have x

p; >0foralle=1,2,...,n
Sample a random set S, C {1,2,...,n}

Compute the gradients V f;(2*) for ¢ € S, only

Approximate the gradient V f(z*) using {V fi(z®) i€ Sk}

Take a stochastic gradient descent step to obtain z**!
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Arbitrary Sampling: Examples forn=3

GD

S = {1, 2,3} with prob 1

SAGA
Sk = {1} with prob 1/3
Sk = {2} with prob 1/3
Sk = {3} with prob 1/3

SAGA with nonuniform sampling
Sk = {1} with prob p;
Sk = {2} with prob ps
S, = {3} with prob ps3

Minibatch SAGA (with 2-nice
Sk = 11,2} with pro
Sk = {2, 3} with pro
Sk = {3, 1} with pro

sampling)

b1/3
b1/3

b1/3

Interpolation between GD and SAGA
St = {1,2,3} with prob 1/2

Sk = {1} with prob
Sk = {2} with prob
Sk = {3} with prob

1/6
1/6
1/6




A Brief History of
~Arbitrary Sampling



| Paper | Algorithm
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R. & Takac (OL 2016; arXiv 2013)

On optimal probabilities in stochastic coordinate descent methods

Qu, R. & Zhang (NeurlPS 2015)

Quartz: Randomized dual coordinate ascent with arbitrary sampling

Csiba & R. (arXiv 2015)

Primal method for ERM with flexible mini-batching schemes and non-convex losses

Qu & R. (OMS 2016)

Coordinate descent with arbitrary sampling I: algorithms and complexity

Qu & R. (OMS 2016)

Coordinate descent with arbitrary sampling Il: expected separable overapproximation

Chambolle, Ehrhardt, R. & Schoenlieb (SIOPT 2018)

Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications

Hanzely, Mishchenko & R. (NeurlPS 2018)

SEGA: Variance reduction via gradient sketching

Hanzely & R. (AISTATS 2019)

Accelerated coordinate descent with arbitrary sampling and best rates for minibatches

Horvath & R. (ICML 2019)

Nonconvex variance reduced optimization with arbitrary sampling

Gower, Loizou, Qian, Sailanbayev, Shulgin & R. (ICML 2019)

SGD: general analysis and improved rates

Qian, Qu & R. (ICML 2019)

SAGA with arbitrary sampling

NSync

QUARTZ

Dual-free SDCA

ALPHA

SPDHGM

SEGA

ACD

SARAH, SVRG,
SAGA

SGD-AS

SAGA-AS

Arbitrary sampling (AS) first introduced
Analysis of coordinate descent under strong convexity

First AS SGD method for min P
Primal-dual stochastic fixed point method; variance reduced

First primal-only AS SGD method for min P
Variance-reduced

First accelerated coordinate descent method with AS
Analysis for smooth convex functions

2

First dedicated study of ESO inequalities Es
needed for analysis of AS methods

Z Ah;

i€S

< pivs Ikl
=1l
Chambolle-Pock method with AS

Variance-reduce coordinate descent with AS

First accelerated coordinate descent method with AS
Analysis for smooth strongly convex functions
Importance sampling for minibatches

First non-convex analysis of an AS method
First optimal mini-batch sampling

First AS variant of SGD (without variance reduction)
Optimal minibatch size

First AS variant of SAGA
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New Method:
SAGA-AS (high level)
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New MEthOd . The Problem
SAGA'AS (high |EVE|) min P(x) L <zn: Azfz(x)> + ¥(x)

rER4

Arbitrary Sampling

Sample fresh S, C {1,2,...,n}

, . : :
. L . Jacobian Sketch, i.e., a random matrix
Jk—l—l — vf’b (ZC ) (S Sk approximating the Jacobian:
) T L :
\J:i i & Sk I~ Ga®) € [V, -, V()] € R™

Use J¥T1 J* to build an unbiased estimator g~ of V f(x¥)

Proximal SGD step with fixed step size

k+1 _ k k
= prox,, (z" — ag”) prox,,(z) = argmin {4ly — z[? + v(y)}

X
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Convergence
Theory

filx) = ¢i(A] x), ¢ is 1/~-smooth

Regime Arbitrary sampling Thm
Smooth
=0 1, 4(1+B)NL,-Ai>\i } , 2B(14+1/B)L } log (%) 33
fi is L;-smooth, f is p-strongly convex
Nonsmooth
P satisfies p-growth condition (19) and Assumption 4.3 (2 + max { 6’{* 3 max -|- ‘;—”zﬁ } }) log 4.4
fi(x) = ¢i(A] ), ¢iis 1/y-smooth, f is L-smooth 1sisn '
Nonsmooth
1 is p-strongly convex max 14 - + 3;)—”?;1} log 4.5

Table 1. Iteration complexity results for SAGA-AS. We have p; := P(i € S), where S is a samp ing of subsets df [n] utilized by

SAGA-AS. The key complexity parameters .4;, I3, and v, are defined in the sections containing the the yrems.







SAGA
(Defazio et al 2014)

PRIMAL / DUAL Primal

Uniform sampling of

SAMPLING of single data points
IMPORTANCE NO
SAMPLING?
Support for any

REGULARIZER i
convex regularizer

RATE Linear
ASSUMPTIONS S S

convex

HANDLING BIAS Scaling

QUARTZ
(Qu et al 2015)

Primal-dual

Arbitrary sampling
(first AS method for
min P)

YES

Support for strongly
convex regularizer

Linear

strongly convex
regularizer

Built in

JacSketch
(Gower et al 2018)

Primal

A general sketching
mechanism, but does not
cover arbitrary sampling

YES
(first SAGA-IS, but not for
minibatches)

No support for a
regularizer

Linear

Each f; strongly convex

Bias-correcting random
variable

SAGA-AS
(THIS WORK)

Primal

Arbitrary sampling

YES
(also for minibatches)

Support for any convex
regularizer

Linear
(same or better)

P satisfying quadratic
growth

Bias-correcting random
vector
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SDCA vs SAGA
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Uniform vs Importance Sampling
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min P(z & (ZA/ ) (@), (1)

where f = & E Aifi(z), fi are smooth and convex, A; > 0 are weights,
and 1) : ]Rd 4} R U {+o0} is closed and convex.

Sampling

Sampling: A random set valued mapping S with values being subsets
of {1,...,n}. A sampling is uniquely defined by assigning probabilities
to all 2" subsets of {1,...,n}. Let 7 Y E|S| be the expected size of S,
and define

i ¥ Prob(ie S), ie{l,....,n}

A sampling is called proper if p; > 0 for all 7. For C' C {1, ..

pe X Prob(s = ).

,n}, let

Bias-correcting random vector: vector fs = (0%, ...,
property
E [Diag(6s)Ise]

0%) € R" with the

ic, E [9151,65} =1, Vi, 2)

where

e e n x 1 vector of all ones

o I: n x n identity matrix

o Ig: n X n matrix with ones in places (i,4) for i € S

® l;cg: indicator random variable of the event i € S, i.e..:
i€ Sandlies=0ifi ¢ S

lies = 1if

Algorithm

Prox operator: prox¥(z

f ) 2,
argmin {5z — y|* +-
Gradient matrix: G(z) = [Vfi(z),--,V*
Algorithm 1: SAGA with Arbitr-

Initialize: 2" € R, 3" €
Parameters: arbit-

05, stepsize o >

for k=1,2,.
Sample frosh Sk
Jk+1 I+ (G

g = TN+ (G -

2+ = prox? (z8 — o,
end
Smoo.
Assumptions:

e f; is convex and L;-smooth,
o [ is p-strongly convex and L-smn .

© There exist constants A; > 0 and 0 < B < 1 such that for any
matrix M € R?"

< Y ANIMLIP + BIMAP

i=1

E [|[MDiag(6s)IsA|

Lyapunov function:
n
TS Yk 4203 AN - V)

i1

where ; = m and 2* is a solution of (1).

e

Convergence Result (E[U/]

q 8 @e=mh p, B!
v is known: a = min; {u+4(1+B)L,A)\,p,’ 2(1+1/B)L}
1 41+B)L 2B(1+ )L 1
k > max ,+M’ﬁ log(f).
i \pi “ " €

q 8 @= ml ; B!
¢ is unknown: o = min; {Wm,m}

1
k> max {3, G0 By B)L’A“A’, L(I: B)L} log (%) .

Di n
Interface For Sampling

© Proper sampling: A; = 3 & Yechl ecpe|C|(0:)%, B = 0.

© 7-nice sampling (05 = —) Ai= B= Zé::;
 Independent sampling (65 = E): A i— 1,B=1

Optimal Bias-Correcting Random Vector

Let ©(S) be the collection of all bias-correcting randor
ated with sampling S, i.c., E[fsIse] = e. Let F'"

Let S be a proper -

.uce Sampling

_ the expected minibatch size, and L ] Piep) Liic
e independent sampling with 6% = 1/p;. Let
o= (p+8LiNi)T ]
Dic) (i +8LiXi)
By choosing min{g;, 1} < p; < 1 such that Zie[n] pi = 7, the iteration
complexity becomes:

max {nJr%g}log(l). (3)
I €
nu+8L_

Linear speedup: When 7 < (3) becomes

(n 8L> (1)

o log

T uT

which yields linear speedup with respect to 7. When 7 > E%BL, (3)

b S
ccomes il ( 1 )
— log

Nonsmooth Case (strongly convex)

Assumptions:
* file) = ¢i(Alx)
® ¢ is 1/y-smooth and convex

® 1) is p-strongly convex

® Let v; satisfy the ESO inequality:

2
Es [||Y° Aihi

i€S

n
< Y pillhll.
i=1

Lyapunov function:

.
L A I AN

V

—

ongly convex)

o and convex

/P
< ESO inequality

© Nullspace consistency: For any z*, y* € X* we have
Al = Aly", Vien],
cx € RY.
© Quadratic functional growth condition: there is a constant p > 0
such that

where A+ arg min{ P(z)
P(z*) - P* > %Hzl’ — [P wpt, VE> 1,

where [2]* = arg min{||z — y|| : y € X*}, for the sequence {z*}
produced by the Algorithm.

Lyapunov function:

n
def v, ;
VR ok — )P+ azat}j)\f\\af - VoAl
i=1 .

where 0; = 7/2v;\;.

Convergence Result (E[V¥] < ¢ - E[W"])

q o fa a0
4 is known: o = min {3 minj<i<n ;x+4vA/7 L}

k2(2+max{%,3max(l U 1) ) ()
[ io\Pi PifrY

 is unknown: a = min {m1nl<,<" e we %}

E> (2+max{6L Inax {24@,)\ 2}} ( )
rew Hpiy  Ppi

200 0 50 10 150 200
epoch
“orm sampling
10°
m—SAGA-IP7=1
++B+ SAGAUNIT-50

Numerical Results

1. mini-batch SAGA versus mini-batch SDCA [1, 2]

100 100

primal dual gap

—GAGA-IP=10
18 1SAGAIP~=50
=8 = SAGA-UNI~=1
—@—SAGA-UNI~=10

primal a
o
primal dual gap

0 50 100 150 200 o 1000 2000 3000
epoch epoch

3. SAGA versus CD

100

norm of gradient step
s

epoch
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