ICML 2019

Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication

Anastasia Koloskova, Sebastian U. Stich, Martin Jaggi

EPFL, Switzerland mlo.epfl.ch

June 11, 2019

Decentralized Stochastic Optimization

each device has oracle access to stochastic gradients $\mathbf{g}_i(\mathbf{x})$, $\mathbb{E}\mathbf{g}_i(\mathbf{x}) = \nabla f_i(\mathbf{x})$, $\operatorname{Var}[\mathbf{g}_i] \leq \sigma_i^2$

S. U. Stich CHOCO-SGD

Decentralized Stochastic Optimization

Applications: servers, mobile devices, sensors, hospitals, ...

Advantages:

- no central coordinator
- local communication vs. all-reduce
- data distributed (storage & privacy aspects)

This work:

bandwidth restricted setting where communication is a bottleneck

Data Compression for Efficient Communication

Communication Compression:

Compress models/model updates before sending over the network.

This work:

Arbitrary compressors, supporting the main SOTA techniques!

General Compressor:
$$Q \colon \mathbb{R}^d \to \mathbb{R}^d$$
 can be biased!
$$\mathbb{E}_Q \|\mathbf{x} - Q(\mathbf{x})\|^2 < (1 - \delta) \|\mathbf{x}\|^2 \qquad \forall \mathbf{x} \in \mathbb{R}^d$$

Examples: Quantization, rounding, sign, top-k, rank-k

Main Contribution: CHOCO-SGD

We propose CHOCO-SGD: a decentralized SGD algorithm with communication compression.

Main result: CHOCO-SGD converges at the rate

$$f(\bar{\mathbf{x}}_T) - f^* = \mathcal{O}\left(\underbrace{\frac{\bar{\sigma}^2}{\mu n T}} + \underbrace{\frac{1}{\mu^2 \delta^2 \rho^4 T^2}}\right)$$

linear speedup higher order term, accounting matches centralized baseline for topology and compression

f $\mu\text{-strong}$ convex, variance $\bar{\sigma}=\frac{1}{n}\sigma_i^2$, spectral gap of topology $\rho>0$

- first scheme with linear speedup for arbitrary compressors
- improves over previous approach [Tang et al., Neurips 18]

Key Technique: CHOCO-Gossip

We propose CHOCO-Gossip: a new algorithm with communication compression for the average consensus problem:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

classic gossip averaging

[Xiao & Boyd, 04] + compression with error feedback

[Stich et al., NeurIPS 18]

- linear convergence for arbitrary compressors
- all previous gossip schemes with compression did not converge linearly (or not at all) for arbitrary compressors

Experimental Results

Example: quantization to 4bits

Logistic regression on epsilon dataset, ring topology with n=9 nodes.

Summary

- + compression with error feedback gives drastic reduction in communication, without hurting the convergence
- + first compressed gossip scheme that converges at linear rate
- first decentralized SGD with compressed communication that converges for arbitrary compression (without hampering the rate)

Compression **for free**, by enabling error feedback in the decentralized setting

Poster #197

