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Introduction
[ 1}

Background

We focus on solving

n

minimize F(z) = f(z) + ¢(x) = %Z fi(x) + (),

i=1

where x € R4, f(z) is strongly convex and smooth, 1(x) is
convex, and can be non-differentiable. 7 is large and d = o(n).
Examples: Lasso, Logistic regression, PCA...

Common solvers: SVRG, Katyusha X (a Nesterov-accelerated
SVRG), SAGA, SDCA,...

Challenge: As first-order methods, they suffer from
ill-conditioning.
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In this talk

In this work, we propose to accelerate SVRG and Katyusha X by
simple yet effective preconditioning.

Acceleration is demonstrated both theoretically and numerically
(7% runtime speedup on average).



iPreSVRG & iPreKatX
°

iPreSVRG

SVRG:

. 1 =
weyr = argmin{y(y) + o |ly — will* + (V1,9)},
yeRd n

where V, is a variance-reduced stochastic gradient of f = %Z fi-
Inexact Preconditioned SVRG (iPreSVRG):

. 1 =
wip1~ arg min{y(y) + 2—Hy — w3 + (Ve, )}
y€ERd Ui

The preconditioner M >~ 0 approximates the Hessian of f.

The subproblem is solved highly inexactly by applying FISTA a
fixed number of times.

This acceleration technique also applies to Katyusha X.
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Choosing M for Lasso

|
minimize — ||Az — b||3 + A1]|z|[1 + Xo||z|)3.
€rd  2n

Two choices of M for Lasso:

@ When d is small, we choose
1 7
M; = —A"A,
n

this is the exact Hessian of the first part.

@ When d is large and AT A is almost diagonally dominant, we
choose

1
My = —diag(ATA) + oI,
n

where @ > 0.



Lasso results
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Figure 1: australian dataset!, d = 14, M = M, 10x runtime speedup
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Figure 2: wla.t dataset!, d = 300, M = M, 5x runtime speedup

Ihttps://wuw.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Experiments
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Choosing M for Logistic

1 n
inimize — Y In(1 —b;-al A o llz||3.
ml;lel]%}ilze n; n(1l +exp(=b; - aj x)) + Ai||z||1 + A2l|z||3

Let B = diag(b)A = diag(b)(ay, az, ..., an)7.

Two choices of M for logistic regression:
@ When d is small, we choose
M, = iBTB,
4n
this is approximately the Hessian of the first part.
@ When d is large and BT B is almost diagonally dominant, we
choose

1
M, = —diag(B" B) + o,
4n

where v > 0.
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Logistic results
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Figure 3: australian dataset, d = 14, M = My, 6%
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Figure 4: wia.t dataset, d = 300, M

= Ms, 4x runtime speedup
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Theoretical Speedup

Theorem 1

Let Ci(m,e) and C{(m,¢) be the gradient complexities of SVRG
and iPreSVRG to reach e—suboptimality, respectively. Here m is
the epoch length.

O When kxy > n% and Ky < n2d—2, we have

1

min,,>; Ci(m, e) nz
<O
ming,>1 C1(m,e) — (/'if)

Q@ When ky > n% and Ky > n2d—2, we have

mianl C{(m,e) < O( d )
ming,>; Ci(m,e) = " /AR;

iPreKatX has a similar speedup.



Conclusions

Conclusions

@ In this work, we apply inexact preconditioning on SVRG and
Katyusha X.

@ With appropriate preconditioners and fast subproblem solvers,
we obtain significant speedups in both theory and practice.

Poster: Today 6:30 PM — 9:00 PM, Pacific Ballroom #192
Code: https://github.com/uclaopt/IPSVRG
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