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Background

We focus on solving

minimizeF (x) = f(x) + ψ(x) =
1

n

n∑
i=1

fi(x) + ψ(x),

where x ∈ Rd, f(x) is strongly convex and smooth, ψ(x) is
convex, and can be non-differentiable. n is large and d = o(n).

Examples: Lasso, Logistic regression, PCA...

Common solvers: SVRG, Katyusha X (a Nesterov-accelerated
SVRG), SAGA, SDCA,...

Challenge: As first-order methods, they suffer from
ill-conditioning.
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In this talk

In this work, we propose to accelerate SVRG and Katyusha X by
simple yet effective preconditioning.

Acceleration is demonstrated both theoretically and numerically
(7× runtime speedup on average).
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iPreSVRG

SVRG:

wt+1 = argmin
y∈Rd

{ψ(y) + 1

2η
‖y − wt‖2 + 〈∇̃t, y〉},

where ∇̃t is a variance-reduced stochastic gradient of f = 1
n

∑
fi.

Inexact Preconditioned SVRG (iPreSVRG):

wt+1≈ argmin
y∈Rd

{ψ(y) + 1

2η
‖y − wt‖2M + 〈∇̃t, y〉}

The preconditioner M � 0 approximates the Hessian of f .

The subproblem is solved highly inexactly by applying FISTA a
fixed number of times.

This acceleration technique also applies to Katyusha X.
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Choosing M for Lasso

minimize
x∈Rd

1

2n
‖Ax− b‖22 + λ1‖x‖1 + λ2‖x‖22.

Two choices of M for Lasso:

1 When d is small, we choose

M1 =
1

n
ATA,

this is the exact Hessian of the first part.

2 When d is large and ATA is almost diagonally dominant, we
choose

M2 =
1

n
diag(ATA) + αI,

where α > 0.
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Lasso results

Figure 1: australian dataset1, d = 14, M =M1, 10× runtime speedup

Figure 2: w1a.t dataset1, d = 300, M =M2, 5× runtime speedup

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Choosing M for Logistic

minimize
x∈Rd

1

n

n∑
i=1

ln(1 + exp(−bi · aTi x)) + λ1‖x‖1 + λ2‖x‖22.

Let B = diag(b)A = diag(b)(a1, a2, ..., an)
T .

Two choices of M for logistic regression:
1 When d is small, we choose

M1 =
1

4n
BTB,

this is approximately the Hessian of the first part.
2 When d is large and BTB is almost diagonally dominant, we

choose

M2 =
1

4n
diag(BTB) + αI,

where α > 0.
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Logistic results

Figure 3: australian dataset, d = 14, M =M1, 6× runtime speedup

Figure 4: w1a.t dataset, d = 300, M =M2, 4× runtime speedup
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Theoretical Speedup

Theorem 1

Let C1(m, ε) and C
′
1(m, ε) be the gradient complexities of SVRG

and iPreSVRG to reach ε−suboptimality, respectively. Here m is
the epoch length.

1 When κf > n
1
2 and κf < n2d−2, we have

minm≥1C
′
1(m, ε)

minm≥1C1(m, ε)
≤ O

(n 1
2

κf

)
.

2 When κf > n
1
2 and κf > n2d−2, we have

minm≥1C
′
1(m, ε)

minm≥1C1(m, ε)
≤ O( d

√
nκf

).

iPreKatX has a similar speedup.
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Conclusions

1 In this work, we apply inexact preconditioning on SVRG and
Katyusha X.

2 With appropriate preconditioners and fast subproblem solvers,
we obtain significant speedups in both theory and practice.

Poster: Today 6:30 PM – 9:00 PM, Pacific Ballroom #192

Code: https://github.com/uclaopt/IPSVRG

https://github.com/uclaopt/IPSVRG

