Blended Conditional Gradients:

The unconditioning of conditional gradients
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CONDITIONAL GRADIENTS: PROJECTION-FREE

Given a polytope P, solve the optimization problem:
min f(x) st. x EP

where the objective function f is smooth and strongly convex

Frank-Wolfe Algorithm

; :gfl:t: ;n;’ga;_p;);nt S PRI e i Find a vertex through LP Oracle.
3: | Stp1 =argmingp VF(x;:)Ts
4
5

Xt+1 = (1=7)Xt +¥St+1
: end for Walk along the conditional

gradient direction.

Problems:
LP Oracle can be computationally expensive.

The conditional gradient direction, as an approximation of the
negative gradient, can be inefficient.
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BLENDED CONDITIONAL GRADIENT

\vertex

" Frank-Wolfe Phase
Once the progress over the
simplex is too small, call the
LP oracle to obtain a new

-

as it makes

KVf(xt)T(17,;4W‘1y —sfW) > o.

Gradient Descent Phase
Perform gradient descent over
the simplex (v, v, V3) as long

N

enough progress:
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GRADIENT DESCENT PHASE
SIMPLEX GRADIENT DESCENT ORACLE

For a general simplex, decompose x as a convex combination

X = :;:1 Aivi,with Zf=1/1i = 1 and /11' = O,l = 1, 2, e, L

Treat A; as variables = x in a standard simplex with normal vector:

N=(11,.., 1)/t
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GRADIENT DESCENT PHASE
SIMPLEX GRADIENT DESCENT ORACLE

Decompose —V f(x;)

N_LlP

boundary point acceptable!?
Set xt4q =y if f(xp) = f(y)

If not acceptable

Perform line search on line

segment between x; and y
Boundary
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BCG ALGORITHM

Algorithm Blended Conditional Gradients (BCG)

Require: smooth convex function f, start vertex x, € P, weak separation oracle LPsep,, accu-

racy K > 1

Ensure: points x;inP fort=1,...,T

Il
Dk
3:

10:
11:
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14:
15:
16:
17:
18:
19:
20:
21:

SOl FCORS IO N FTTRN

dy — max,ep Vf (%) (xg — v)/2 {Initial dual gap estimate}
Sp « {xp}
fort=0toT —1do
AR argmax, ¢ Vf(x;)v
U%-“W—S - argminvest Vf (x)v
if Vf (x,) () —0oFW=5) > @, then
X411, St41 < Simplex Gradient Descent(x;, S;)
D1 — Py
else
if v; = false then
Xt+1 < Xt
D, 1 « D;/2 {update dual gap estimate}
St1 < St
else
Xppq < argming oo f(X)
Choose S;.1 C S; U {v;} minimal such that x;, 1 € 5;,1.
Dpy < Dy
end if
end if
end for

Gradient Descent Phase

Frank-VWolfe Phase
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COMPUTATIONAL RESULTS

BCG outperforms several recent variants of Frank-VVolfe algorithm

10
0

S S
o 0 o
S 2 -10
2 2
= =
20 -10 a0
3 S 20
© 15 o 5
< <
g g _ _
Z 10 £, \\-.Q_;' —
5 5
o 5 &)
o0 N -5
] ]
= 0 =

-10

0 1000 2000 0 20 40 0 500 1000 0 20
Iterations Wall-clock Time Iterations Wall-clock Time
Fig |: Lasso Regression Fig 2: Sparse Signal Recovery

Georgia Machine
Tech Learning



CONVERGENCE

Theorem

If f is a strongly convex and smooth function over the polytope P with
geometric strong convexity ¢ and simplicial curvature, then BCG algorithm
ensures f(x;) — f(x*) < € for some T that satisfies:
2D, D, 64CA 4C21 ch D,
T < [logT} + 8 [logﬁ} + [log \ =0 (7 log?)

7] €
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THANKS!
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