
Projection onto Minkowski Sums with
Application to Constrained Learning

Joong-Ho (Johann) Won1 Jason Xu2 Kenneth Lange3

1Department of Statistics, Seoul National University
2Department of Statistical Science, Duke University

3Departments of Biomathematics, Human Genetics, and Statistics, UCLA

June 11, 2019

International Conference on Machine Learning



Outline

• Minkowski sum and projection

• Why are Minkowski sums useful for constrained learning?

• Constrained learning via projection onto Minkowski sums

• Minkowski projection algorithm

• Applications to constrained learning

• Conclusion

Minkowski Projection 1



Minkowski sum of sets

A+B , {a+ b : a ∈ A, b ∈ B}, A,B ⊂ Rd

Image source: Christophe Weibel

https://sites.google.com/site/christopheweibel/research/minkowski-sums
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Projection onto Minkowski sums

PA+B(x) = argmin
u∈A+B

1

2
‖u− x‖22, x /∈ A+B (P)

Image source: Christophe Weibel

https://sites.google.com/site/christopheweibel/research/minkowski-sums
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Why are Minkowski sums useful for constrained learning?

Many penalized or constrained learning problems are of the form

min
x∈Rd

f(x) +

k∑
i=1

σCi(x)

• σC(x) = supy∈C〈x,y〉 is the support function of convex set C.

• Example: elastic net minx f(x) + λ1‖x‖1 + λ2‖x‖2,

C1 = {x : ‖x‖∞ ≤ λ1}, C2 = {x : ‖x‖2 ≤ λ2} (dual norm balls)
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Why are Minkowski sums useful for constrained learning?

Many penalized or constrained learning problems are of the form

min
x∈Rd

f(x) +

k∑
i=1

σCi(x) = min
x∈Rd

f(x) + σC1+···+Ck(x) (1)

• Support functions are additive over Minkowski sums (Hiriart-Urruty and
Lemaréchal 2012).

• New perspective on LHS: minimizing sum of two (convex) functions
instead of k + 1 functions.
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Multiple/overlapping norm penalties

`1,p group lasso/multitask learning (Yuan and Lin 2006) with overlaps
allowed:

min
x∈Rd

f(x) + λ

k∑
i=1

‖xi1‖p, p ≥ 1

where xi1=subvector of x; i1 ⊂ {1, . . . , d}=group index.

• Involved sets: `q-norm disks.

Ci = {y = (yi1,yi2) : ‖yi1‖q ≤ λ, yi2 = 0},
1

p
+

1

q
= 1, i2 = {1, . . . , d} \ i1.

(2)

• No distinction between overlapping vs. non-overlapping groups!

Minkowski Projection 6



Conic constraints

min
x∈Rd

f(x) subject to x ∈ K∗1 ∩K∗2 ∩ · · · ∩K∗k

where K∗i = {y : 〈x,y〉 ≤ 0,∀x ∈ Ki} is the polar cone of closed convex
cone Ki.

• Use the fact ιK∗i (x) = σKi(x) to express it as

min
x∈Rd

f(x) +

k∑
i=1

ιK∗i (x) = min
x∈Rd

f(x) +

k∑
i=1

σKi(x).

• ιS = 0/∞ indicator of set S
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Constrained lasso: mix-and-match

min
x∈Rd

f(x) + λ‖x‖1 subject to Bx = 0, Cx ≤ 0,

which subsumes the generalized lasso (Tibshirani and Taylor 2011) as a
special case (James, Paulson, and Rusmevichientong 2013; Gaines, Kim,
and Zhou 2018).

• Involved sets: cone, subspace, and `∞-norm ball

C1 = {x : Bx = 0}∗ = {x : Bx = 0}⊥,
C2 = {x : Cx ≤ 0}∗, C3 = {x : ‖x‖∞ ≤ λ}

(3)
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Constrained learning via projection onto Minkowski sums

Contemporary methods for solving problem (1) (e.g., proximal gradient)
requires computing the proximity operator of σC1+···+Ck:

proxγσC1+···+Ck
(x) = argmin

u∈Rd
σC1+···+Ck(u) +

1

2γ
‖u− x‖22

• Proximal gradient:

x(t+1) = proxγtσC1+···+Ck

(
x(t) − γ−1t ∇f(x(t))

)
• Can be computed via Minkowski projection
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• Duality:

σ∗C1+···+Ck(y) = ιC1+···+Ck(y), (ιS(u) = 0 if u ∈ S, ∞ otherwise)

if C1 + · · ·+ Ck is closed convex; g∗(y) = supx〈x,y〉 − g(x) is the
Fenchel conjugate of g.

• Moreau’s decomposition

x = proxγg(x) + γ proxγ−1g∗(γ
−1x)

In terms of Minkowski projection,

proxγσC1+···+Ck
(x) = x− γ proxγ−1ιC1+···+Ck

(γ−1x)

= x− γPC1+···+Ck(γ
−1x)
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Minkowski projection algorithm

Goal: to develop an efficient method for computing PC1+···+Ck(x), in case
projection onto each set PCi(x) is simple.

MM algorithm:

1: Input: External point x /∈ C1 + . . .+ Ck;
Projection operator PCi onto set Ci, i = 1, . . . , k;
initial value ai0, i = 1, . . . , k; viscosity parameter ρ ≥ 0

2: Initialization: n← 0
3: Repeat
4: For i = 1, 2, . . . , k

5: a
(i)
n+1 ← PCi

(
1

1+ρ

(
x−

∑i−1
j=1 a

(j)
n+1 −

∑k
j=i+1 a

(j)
n

)
+ ρ

1+ρa
(i)
n

)
6: End For
7: n← n+ 1
8: Until Convergence

9: Return
∑k
i=1 a

(i)
n
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Properties of the Algorithm

• Assume k = 2 for exposition purpose: A = C1, B = C2.

Proposition 1. If both A and B are closed and convex, and A+B is
closed, then the Algorithm with ρ = 0 generates a sequence converging to
PA+B(x).

� Proof: paracontraction (Elsner, Koltracht, and Neumann 1992; Lange
2013).

Theorem 1. If in addition either A or B is strongly convex, then the
sequence generated by Algorithm with ρ = 0 converges linearly to
PA+B(x).

� Set C ⊂ Rd is α-strongly convex with respect to norm ‖ · ‖ if there is
a constant α > 0 such that for any a and b in C and any γ ∈ [0, 1],
C contains a ball of radius r = γ(1− γ)α2‖a− b‖2 centered at
γa+ (1− γ)b (Garber and Hazan 2015).

� Ex) `q-norm ball for q ∈ (1, 2]
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Theorem 2. If A and B are closed and subanalytic (possibly non-convex),
and at least one of them is bounded, then the sequence generated by the
Algorithm with ρ > 0 converges to a critical point of (P) regardless of the
initial values.

� Proof: Kurdyka- Lojasiewicz inequality (Bolte, Daniilidis, and Lewis
2007).

Theorem 3. If A+B is polyhedral, then the Algorithm with ρ > 0
generates a sequence converging linearly to PA+B(x).

� Proof: Luo-Tseng error bound (Karimi, Nutini, and Schmidt 2018).
� Ex) `1,∞ overlapping group penalty/multitask learning; polyhedra are

not strongly convex
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Applications to constrained learning



Overlapping group penalties/multitask learning

min
x∈Rd

f(x) + λ

k∑
i=1

‖xi1‖p,

Ci = {y = (yi1,yi2) : ‖yi1‖q ≤ λ, yi2 = 0}

• Overlaps automatically handled with Minkowski projection.

• If p ∈ [2,∞), dual `q-norm disks are strongly convex; if p =∞,
polyhedral (linear convergence)

• Fast and reliable algorithm for projection onto `q-norm disks available
(Liu and Ye 2010).
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• Comparison to the dual projected gradient method used in SLEP (Yuan,
Liu, and Ye 2011; Liu, Ji, and Ye 2011; Zhou, Zhang, and So 2015):
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Constrained lasso

min
x∈Rd

f(x) + λ‖x‖1 subject to Bx = 0, Cx ≤ 0,

• Zero-sum constrained lasso (Lin et al. 2014; Altenbuchinger

et al. 2017): C1 = {x :
∑d
j=1 xj = 0}⊥, C2 = {0},

C3 = {x : ‖x‖∞ ≤ λ} (B = 1T , C = 0).

• Nonnegative lasso (Efron et al. 2004; El-Arini et al. 2013): C1 = {0},
C2 = {x : −x ≤ 0}∗, C3 = {x : ‖x‖∞ ≤ λ} (B = 0, C = −I).
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• Comparison to generic methods by Gaines, Kim, and Zhou (2018),
including path algorithm, ADMM, and commercial solver Gurobi:
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Conclusion

• Reconsider constrained learning problems:

� structural complexities such as non-separability can be handled
gracefully via formulations involving Minkowski sums.

• Very simple and efficient algorithm for projecting points onto Minkowski
sums of sets:

� Linear rate of convergence whenever at least one summand is
strongly convex or the Luo-Tseng error bound condition is satisfied.

• Our algorithm can serve as an inner loop in, e.g, proximal gradient:

� Competitive performance
� Fast (inner loop) convergence is crucial.
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Comparison to other algorithms

• Splitting methods: ADMM (Boyd et al. 2010), Davis-Yin three-operator
splitting (Davis and Yin 2017)

• Do not produce descent algorithms, and introduce additional variables
as well as intermediate steps.

• We do not know whether these methods can achieve a linear
convergence rate under, e.g., strong convexity of a summand set.

• Sublinear rates for non-strongly convex sets can be achieved with our
algorithm with ρ > 0 as well.
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