
Submodular Observation Selection and
Information Gathering for Quadratic Models

Abolfazl Hashemi∗, Mahsa Ghasemi, Haris Vikalo, and Ufuk Topcu

ICML, Wednesday June 12, 2019



Observation Selection and Information Gathering

• Resource-constrained inference problems

◦ Target tracking, experimental design, sensor networks

• Access to expensive / limited observations

◦ Communication cost, power consumption, computational burden

Goal
Cost-effectively identify the most useful subset of information
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Observation Selection for Quadratic Models

• Quadratic relation between observations and unknown parameters

yi =
1
2
x>Zix + h>i x︸ ︷︷ ︸

gi (x)

+vi , i ∈ {1, 2, . . . , n}

(a) Phase retrieval: yi = 1
2x∗(ziz∗i )x+vi (b) Localization: yi = 1

2‖hi − x‖22 + vi

(Figures from [Candes’15] and [Gezici’05])
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Locally-Optimal Observation Selection

• Challenge: Unknown optimal estimator and error covariance matrix
• Locally-optimal observation selection [Flaherty’06, Krause’08]:

Linearize around a guess x0

ŷi := yi − gi (x0) ≈ ∇gi (x0)
>x + vi ,

and find an approximate covariance matrix:

P̂S =

(
Σ−1

x +
∑
i∈S

1
σ2
i

∇gi (x0)∇gi (x0)
>

)−1

• Observation selection task

minimize
S

Tr
(
P̂S
)

s.t. S ⊂ [n], |S| = K
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Proposed Approach: VTB for Quadratic Models

Main Idea
Exploiting Van Trees’ bound (VTB) on error covariance of weakly
biased estimators

• A closed-form expression for VTB of quadratic models

Theorem 1
For any weakly biased estimator x̂S with error covariance PS it holds
that

PS �

(∑
i∈S

1
σ2
i

(
ZiΣxZ>i + hih>i

)
+ Ix

)−1

= BS

• Proposed method: Find S by greedily maximizing Tr(.) scalarization
of BS : f A(S) := Tr(I−1

x − BS)
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Characterizing f A(S)

• Submodularity: fj(S) ≥ fj(T ) for all S ⊆ T ⊂ X and j ∈ X\T

• αf -Weak Submodularity [Zhang’16, Chamon17]: αf × fj(S) ≥ fj(T )
where αf > 1 for all S ⊆ T ⊂ X and j ∈ X\T

• Greedy maximization performance:

f (S) ≥ (1− e
− 1

αf )f (O)

Theorem 2

f A(S) is a normalized, monotone set function with bounded αf A .

• Interpretation of bound on αf A as SNR condition

5/6Hashemi et al.: Submodular Observation Selection for Quadratic Models



Characterizing f A(S)

• Submodularity: fj(S) ≥ fj(T ) for all S ⊆ T ⊂ X and j ∈ X\T

• αf -Weak Submodularity [Zhang’16, Chamon17]: αf × fj(S) ≥ fj(T )
where αf > 1 for all S ⊆ T ⊂ X and j ∈ X\T

• Greedy maximization performance:

f (S) ≥ (1− e
− 1

αf )f (O)

Theorem 2

f A(S) is a normalized, monotone set function with bounded αf A .

• Interpretation of bound on αf A as SNR condition

5/6Hashemi et al.: Submodular Observation Selection for Quadratic Models



Characterizing f A(S)

• Submodularity: fj(S) ≥ fj(T ) for all S ⊆ T ⊂ X and j ∈ X\T

• αf -Weak Submodularity [Zhang’16, Chamon17]: αf × fj(S) ≥ fj(T )
where αf > 1 for all S ⊆ T ⊂ X and j ∈ X\T

• Greedy maximization performance:

f (S) ≥ (1− e
− 1

αf )f (O)

Theorem 2

f A(S) is a normalized, monotone set function with bounded αf A .

• Interpretation of bound on αf A as SNR condition

5/6Hashemi et al.: Submodular Observation Selection for Quadratic Models



Characterizing f A(S)

• Submodularity: fj(S) ≥ fj(T ) for all S ⊆ T ⊂ X and j ∈ X\T

• αf -Weak Submodularity [Zhang’16, Chamon17]: αf × fj(S) ≥ fj(T )
where αf > 1 for all S ⊆ T ⊂ X and j ∈ X\T

• Greedy maximization performance:

f (S) ≥ (1− e
− 1

αf )f (O)

Theorem 2

f A(S) is a normalized, monotone set function with bounded αf A .

• Interpretation of bound on αf A as SNR condition

5/6Hashemi et al.: Submodular Observation Selection for Quadratic Models



Evaluation of Theoretical Results

• Phase retrieval problem with n = 12 observations
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(c) Tightness of VTB
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(d) Bound on αf A

• Asymptotic tightness of VTB

• Tightness of weak submodularity bound in low SNR regime
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Thank you!
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