Improved Parallel Algorithms for Density-Based Network Clustering

Mohsen Ghaffari ETH Silvio Lattanzi Google Slobodan Mitrović MIT

A wide range of applications in data mining:

A wide range of applications in data mining:

Community detection

[Leskovec et al. '08; Chen & Saad '12; Gionis & Tsourakakis'15; Mitzenmacher et al. '15]

A wide range of applications in data mining:

Community detection

[Leskovec et al. '08; Chen & Saad '12; Gionis & Tsourakakis'15; Mitzenmacher et al. '15]

Spam detection

[Gibson et al. '05]

A wide range of applications in data mining:

Community detection

[Leskovec et al. '08; Chen & Saad '12; Gionis & Tsourakakis '15; Mitzenmacher et al. '15]

Spam detection

[Gibson et al. '05]

Computational biology

[Altaf-Ul-Amin et al. '06; Fratkin et al. '06; Saha et al. '10]

...

A wide range of applications in data mining:

Community detection

[Leskovec et al. '08 Gionis & Tsouraka

Spam detecti

[Gibson et al. '05]

Computation

[Altaf-Ul-Amin et a Saha et al. '10]

We study:

- 1. Densest subgraph
- 2. k-core decomposition
- 3. Graph orientation

Densest subgraph

Goal: Given a graph G, find a subgraph H such that |E(H)| / |V(H)| is *maximized*.

Densest subgraph

Goal: Given a graph G, find a subgraph H such that |E(H)| / |V(H)| is *maximized*.

$$\frac{|E(G)|}{|V(G)|} = \frac{17}{13}$$

Densest subgraph

Goal: Given a graph G, find a subgraph H such that |E(H)| / |V(H)| is *maximized*.

Goal: Given k, find a maximal subgraph of minimum degree at least k. (*k-core*)

Goal: Given k, find a maximal subgraph of minimum degree at least k. (*k-core*)

Goal: Given k, find a maximal subgraph of minimum degree at least k. (k-core)

Goal: Given k, find a maximal subgraph of minimum degree at least k. (*k-core*)

The coreness number of a vertex v is the maximum k for which v is part of the k-core.

How to compute these clusters

Algorithms performed sequentially.

Algorithms performed

Moore's law is slowing...

arm

Algorithms performed

Modern

Algorithms performed

Moore's law is slowing...

arm

Modern

Algorithms performed

Modern

Massively Parallel
Computation
(MPC) model

An approach to handling massive data

Examples:

- MapReduce [DG, '04, '08]
- Hadoop [W, '12]
- Pregel [Google, '09]
- Dryad [IBYBF, '07]
- Spark [ZCFSS, '10]

Data:

N machines:

process data locally

One round

One round

Related work

- 1. Densest Subgraph in Streaming and MapReduce Bahmani, Kumar, Vassilvitskii, VLDB 2012.
- 2. Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams Bhattacharya, Henzinger, Nanongkai, Tsourakakis, STOC 2015.
- 3. Efficient Densest Subgraph Computation in Evolving Graphs Epasto, Lattanzi, Sozio, WWW 2015.
- 4. Densest Subgraph in Dynamic Graph Streams
 McGregor, Tench, Vorotnikova, Vu, MFCS 2015.
- 5. Brief Announcement: Applications of Uniform Sampling: Densest Subgraph and Beyond Esfandiari, Hajiaghayi, Woodruff, SPAA 2016.
- 6. Efficient primal-dual graph algorithms for MapReduce
 Bahmani, Goel, Munagala, Workshop on Algorithms and Models for the Web-Graph 2014.
- 7. Parallel and streaming algorithms for k-core decomposition Esfandiari, Lattanzi, and Mirrokni, ICML 2018.
- Streaming algorithms for k-core decomposition
 Saríyüce, Gedik, Jacques, Wu, Çatalyürek, VLDB 2013.
- 9. Distributed-Core View Materialization and Maintenance for Large Dynamic Graphs Aksu, Canim, Chang, Korpeoglu, Ulusoy, TKDE 2014.

Our results

n = number of vertices

Theorem 1

 $(1+\epsilon)$ -approximate k-core decomposition can be obtained in $O(\log\log n)$ MPC rounds with $\tilde{O}(n)$ memory per machine.

Theorem 3

 $(1+\epsilon)$ -approximate densest subgraph can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^\delta)$ memory per machine and the total memory of $\tilde{O}(\max\{n^{1+\delta},m\})$.

Theorem 2

 $(2+\epsilon)$ -approximate k-core decomposition can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^{\delta})$ memory per machine and the total memory of $\tilde{O}(\max\{n^{1+\delta},m\})$.

Theorem 4

For a graph of arboricity λ , a $(2+\epsilon)\lambda$ orientation can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^{\delta})$ memory per machine and the total memory of $\tilde{O}(\lambda n)$.

Our results __ n = number of vertices

Theorem 1

 $(1 + \epsilon)$ -approximate k-core decomposition can be obtained in $O(\log \log n)$ MPC rounds with $\tilde{O}(n)$ memory per machine.

Theorem 3

 $(1+\epsilon)$ -approximate densest subgraph can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^\delta)$ memory per machine and the total memory of $\tilde{O}(\max\{n^{1+\delta},m\})$.

Poster: Wed, Pacific Ballroom #166

Theorem 2

 $(2+\epsilon)$ -approximate k-core decomposition can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^{\delta})$ memory per machine and the total memory of $\tilde{O}(\max\{n^{1+\delta},m\})$.

Theorem 4

For a graph of arboricity λ , a $(2+\epsilon)\lambda$ orientation can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^\delta)$ memory per machine and the total memory of $\tilde{O}(\lambda n)$.

Next

Theorem 1

 $(1+\epsilon)$ -approximate k-core decomposition can be obtained in $O(\log\log n)$ MPC rounds with $\tilde{O}(n)$ memory per machine.

Next

Theorem 1

 $(1+\epsilon)$ -approximate k-core decomposition can be obtained in $O(\log\log n)$ MPC rounds with $\tilde{O}(n)$ memory per machine.

High-level idea:

Simulate the sequential algorithm.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

k=2

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

k=2

Coreness value of all remaining vertices >= 2.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

Implementing this approach directly can take too many rounds.

k=2

Coreness value of all remaining vertices >= 2.

- Given a threshold k, repeatedly remove all the vertices of degree less than k.
- The coreness value of a vertex is the largest k for which it is not removed.

Implementing this approach directly can take too many rounds.

Idea:

Process only large thresholds.

k=2

Coreness value of all remaining vertices >= 2.

Partition the graph across \sqrt{n} machines.

Partition the graph across \sqrt{n} machines.

The local degree of each vertex v with $d_v \ge \sqrt{n} \log n$ is sharply concentrated around its expectation. (Chernoff bound)

Partition the graph across \sqrt{n} machines.

The local degree of each vertex v with $d_v \ge \sqrt{n} \log n$ is sharply concentrated around its expectation. (Chernoff bound)

Run the sequential algorithm locally to find $(1 + \epsilon)$ -approximate k-cores for $k \ge \sqrt{n} \log n$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \ge \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Partitioning across \sqrt{n} machines detects the k-cores for $k \ge \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \ge \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

The number of remaining edges is $\tilde{O}(n\sqrt{n})$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \ge \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

The number of remaining edges is $\tilde{O}(n\sqrt{n})$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \geq \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

The number of remaining edges is $\tilde{O}(n\sqrt{n})$.

Detect k-cores for $k \ge n^{\frac{1}{4}} \log n$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \geq \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

The number of remaining edges is $\tilde{O}(n\sqrt{n})$.

Repeat.

Detect k-cores for $k \ge n^{\frac{1}{4}} \log n$.

Partitioning across \sqrt{n} machines detects the k-cores for $k \geq \sqrt{n} \log n$. How about $k < \sqrt{n} \log n$?

Ignore all the edges between vertices of coreness $\geq \sqrt{n} \log n$.

The number of remaining edges is $\tilde{O}(n\sqrt{n})$.

Repeat.

Detect k-cores for $k \ge n^{\frac{1}{4}} \log n$.

$$n \to n^{1/2} \to n^{1/4} \to \dots \to n^{1/\log n}$$
log log n rounds

Experiments

SKC = the algorithm in [Esfandiari et al. 2018] VKC = Theorem 1

Experiments

SKC = the algorithm in [Esfandiari et al. 2018] VKC = Theorem 2

Next

Theorem 2

 $(2+\epsilon)$ -approximate k-core decomposition can be obtained in $\tilde{O}(\sqrt{\log n})$ MPC rounds with $O(n^\delta)$ memory per machine and the total memory of $\tilde{O}(\max\{n^{1+\delta},m\})$.

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

k=1

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

- Given a threshold k, repeatedly remove all the vertices of degree less than $(2 + \epsilon)k$.
- The approximate coreness value of a vertex is the largest k for which it is not removed.

k=1

The algorithm terminates in $O(\log n)$ iterations!

High-level idea:

Simulate $O(\log n)$ sequential in $\tilde{O}(\sqrt{\log n})$ MPC iterations.

 $(2 + \epsilon)$ -approximate 1-coreness

Simulation of the $\log n$ -iteration algorithm

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulation of the $\log n$ -iteration algorithm

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

Simulation of the $\log n$ -iteration algorithm

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

A $\sqrt{\log n}$ -hop neighborhood might be too big! E.g., a vertex has degree n.

Split the $\log n$ iterations into $\sqrt{\log n}$ phase, each phase consisting of $\sqrt{\log n}$ iterations.

Simulate each phase for each vertex by gathering its $\sqrt{\log n}$ -hop neighborhood.

A $\sqrt{\log n}$ -hop neighborhood might be too big! E.g., a vertex has degree n.

Idea:

Sparsify the graph.

Given a parameter k, sparsify the graph by keeping each edge with probability $\Theta\left(\frac{\log n}{k}\right)$.

Given a parameter k, sparsify the graph by keeping each edge with probability $\Theta\left(\frac{\log n}{k}\right)$.

The approximate k-core is preserved after the sparsification. (Chernoff bound)

Given a parameter k, sparsify the graph by keeping each edge with probability $\Theta\left(\frac{\log n}{k}\right)$.

The approximate k-core is preserved after the sparsification. (Chernoff bound)

Some vertices still might have too large degree. E.g., vertex of degree n for k=n^{0.1}.

Given a parameter k, sparsify the graph by keeping each edge with probability $\Theta\left(\frac{\log n}{k}\right)$.

The approximate k-core is preserved after the sparsification. (Chernoff bound)

Some vertices still might have too large degree. E.g., vertex of degree n for k=n^{0.1}.

"Freeze" all the vertices of degree more than $2^{\sqrt{\delta \log n}}$ after the sparsification.

Given a parameter k, sparsify the graph by keeping each edge with probability $\Theta\left(\frac{\log n}{k}\right)$.

The approximate k-core is preserved after the sparsification. (Chernoff bound)

Some vertices still might have too large degree. E.g., vertex of degree n for k=n^{0.1}.

"Freeze" all the vertices of degree more than $2^{\sqrt{\delta \log n}}$ after the sparsification.

The number of frozen vertices is small and affects the round complexity only by a constant.

