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We study:
1. Densest subgraph
2. k-core decomposition
3. Graph orientation
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k-core decomposition

2-core

Goal: Given k, find a maximal subgraph of 
minimum degree at least k. (k-core)

The coreness number of a vertex v is the 
maximum k for which v is part of the k-core.



Hierarchical clustering via k-core



Hierarchical clustering via k-core

1-core



Hierarchical clustering via k-core

1-core

2-core



Hierarchical clustering via k-core

1-core

2-core

3-core



Hierarchical clustering via k-core

1-core

2-core

3-core

4-core



How to compute 
these clusters ?



Traditional



Traditional

Algorithms performed 
sequentially.



Traditional

Algorithms performed 
sequentially.



Traditional Modern

Algorithms performed 
sequentially.



Traditional Modern

Algorithms performed 
sequentially.



Traditional Modern

Algorithms performed 
sequentially.

Massively Parallel 
Computation 
(MPC) model

Examples:

• MapReduce [DG, ‘04, ‘08]

• Hadoop [W, ‘12]

• Pregel [Google, ’09]

• Dryad [IBYBF, ‘07]

• Spark [ZCFSS, ‘10]

An approach to handling 
massive data
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The sequential algorithm

- Given a threshold k, repeatedly 
remove all the vertices of degree 
less than k.

- The coreness value of a vertex is 
the largest k for which it is not 
removed.

k=2

Coreness value of all remaining vertices >= 2.

Implementing this approach directly 
can take too many rounds.

Idea:
Process only large thresholds.
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Partition vertices and process induced graphs

Partition the graph across 𝑛
machines.

The local degree of each vertex 
v with dv ≥ 𝑛 log 𝑛 is sharply 
concentrated around its 
expectation. (Chernoff bound)

Run the sequential algorithm 
locally to find (1 + 𝜖)-
approximate k-cores for 𝑘 ≥
𝑛 log 𝑛.

Apply the sequential algorithm locally.
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Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores 
for 𝑘 ≥ 𝑛 log 𝑛. How about 
𝑘 < 𝑛 log 𝑛?

Ignore all the edges 
between vertices of 
coreness ≥ 𝑛 log 𝑛.

The number of remaining 
edges is ෨𝑂(𝑛 𝑛).

Partition the vertices 

across 𝑛
1

4 machines.

Detect k-cores for k ≥

𝑛
1

4 log 𝑛.

Repeat.

n → n1/2 → n1/4 → … → n1/log n

log log n rounds
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(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

The algorithm terminates 
in 𝑂 log 𝑛 iterations!

High-level idea:
Simulate 𝑂 log 𝑛 sequential 

in ෨𝑂 log 𝑛 MPC iterations.

𝟐 + 𝝐 -approximate 1-coreness
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vertex has degree n.
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Given a parameter k, sparsify
the graph by keeping each 

edge with probability Θ
log 𝑛

𝑘
. 

Some vertices still might 
have too large degree. E.g., 
vertex of degree n for k=n0.1.

“Freeze” all the vertices of 

degree more than 2 𝛿 log 𝑛

after the sparsification.

The number of frozen vertices 
is small and affects the round 
complexity only by a constant.

The approximate k-core is 
preserved after the 
sparsification. (Chernoff bound)
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