
Improved Parallel Algorithms for
Density-Based Network Clustering

Slobodan Mitrović

MIT

Silvio Lattanzi

Google

Mohsen Ghaffari

ETH

A wide range of applications in data mining:

Why density-based network clustering?

A wide range of applications in data mining:

Why density-based network clustering?

Community detection
[Leskovec et al. ‘08; Chen & Saad ‘12;
Gionis & Tsourakakis ’15; Mitzenmacher et al. ‘15]

A wide range of applications in data mining:

Why density-based network clustering?

Community detection
[Leskovec et al. ‘08; Chen & Saad ‘12;
Gionis & Tsourakakis ’15; Mitzenmacher et al. ‘15]

Spam detection
[Gibson et al. ‘05]

A wide range of applications in data mining:

Why density-based network clustering?

Community detection
[Leskovec et al. ‘08; Chen & Saad ‘12;
Gionis & Tsourakakis ’15; Mitzenmacher et al. ‘15]

Spam detection
[Gibson et al. ‘05]

Computational biology
[Altaf-Ul-Amin et al. ‘06; Fratkin et al. ‘06;
Saha et al. ‘10]

…

A wide range of applications in data mining:

Why density-based network clustering?

Community detection
[Leskovec et al. ‘08; Chen & Saad ‘12;
Gionis & Tsourakakis ’15; Mitzenmacher et al. ‘15]

Spam detection
[Gibson et al. ‘05]

Computational biology
[Altaf-Ul-Amin et al. ‘06; Fratkin et al. ‘06;
Saha et al. ‘10]

…

We study:
1. Densest subgraph
2. k-core decomposition
3. Graph orientation

Densest subgraph

Goal: Given a graph G, find a subgraph H
such that |E(H)| / |V(H)| is maximized.

Densest subgraph

Goal: Given a graph G, find a subgraph H
such that |E(H)| / |V(H)| is maximized.

|𝐸 𝐺 |

|𝑉 𝐺 |
=
17

13

Densest subgraph

Goal: Given a graph G, find a subgraph H
such that |E(H)| / |V(H)| is maximized.

|𝐸 𝐺 |

|𝑉 𝐺 |
=
17

13

|𝐸 𝐻 |

|𝑉 𝐻 |
=
11

7

k-core decomposition

Goal: Given k, find a maximal subgraph of
minimum degree at least k. (k-core)

k-core decomposition

Goal: Given k, find a maximal subgraph of
minimum degree at least k. (k-core)

1-core

k-core decomposition

2-core

Goal: Given k, find a maximal subgraph of
minimum degree at least k. (k-core)

k-core decomposition

2-core

Goal: Given k, find a maximal subgraph of
minimum degree at least k. (k-core)

The coreness number of a vertex v is the
maximum k for which v is part of the k-core.

Hierarchical clustering via k-core

Hierarchical clustering via k-core

1-core

Hierarchical clustering via k-core

1-core

2-core

Hierarchical clustering via k-core

1-core

2-core

3-core

Hierarchical clustering via k-core

1-core

2-core

3-core

4-core

How to compute
these clusters ?

Traditional

Traditional

Algorithms performed
sequentially.

Traditional

Algorithms performed
sequentially.

Traditional Modern

Algorithms performed
sequentially.

Traditional Modern

Algorithms performed
sequentially.

Traditional Modern

Algorithms performed
sequentially.

Massively Parallel
Computation
(MPC) model

Examples:

• MapReduce [DG, ‘04, ‘08]

• Hadoop [W, ‘12]

• Pregel [Google, ’09]

• Dryad [IBYBF, ‘07]

• Spark [ZCFSS, ‘10]

An approach to handling
massive data

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

Data:

S S S S

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

Data:

S S S S

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

Data:

S S S S

process data locally

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

. . .
Next-round

data:

Data:

S S S S

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

. . .
Next-round

data:

One round

Data:

S S S S

Massively Parallel Computation (MPC) round

. . .

. . .N machines:

. . .
Next-round

data:

Data:

S S S S

One round

Related work

1. Densest Subgraph in Streaming and MapReduce
Bahmani, Kumar, Vassilvitskii, VLDB 2012.

2. Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams
Bhattacharya, Henzinger, Nanongkai, Tsourakakis, STOC 2015.

3. Efficient Densest Subgraph Computation in Evolving Graphs
Epasto, Lattanzi, Sozio, WWW 2015.

4. Densest Subgraph in Dynamic Graph Streams
McGregor, Tench, Vorotnikova, Vu, MFCS 2015.

5. Brief Announcement: Applications of Uniform Sampling: Densest Subgraph and Beyond
Esfandiari, Hajiaghayi, Woodruff, SPAA 2016.

6. Efficient primal-dual graph algorithms for MapReduce
Bahmani, Goel, Munagala, Workshop on Algorithms and Models for the Web-Graph 2014.

7. Parallel and streaming algorithms for k-core decomposition
Esfandiari, Lattanzi, and Mirrokni, ICML 2018.

8. Streaming algorithms for k-core decomposition
Saríyüce, Gedik, Jacques, Wu, Çatalyürek, VLDB 2013.

9. Distributed-Core View Materialization and Maintenance for Large Dynamic Graphs
Aksu, Canim, Chang, Korpeoglu, Ulusoy, TKDE 2014.

Our results

Theorem 1
1 + 𝜖 -approximate k-core decomposition can

be obtained in 𝑂 log log 𝑛 MPC rounds with
෨𝑂(𝑛) memory per machine.

Theorem 3

1 + 𝜖 -approximate densest subgraph can be
obtained in ෨𝑂 log𝑛 MPC rounds with 𝑂 𝑛𝛿

memory per machine and the total memory of
෨𝑂 max 𝑛1+𝛿,𝑚 .

Theorem 2

2 + 𝜖 -approximate k-core decomposition can
be obtained in ෨𝑂 log 𝑛 MPC rounds with
𝑂 𝑛𝛿 memory per machine and the total
memory of ෨𝑂 max 𝑛1+𝛿 ,𝑚 .

Theorem 4

For a graph of arboricity 𝜆, a 2 + 𝜖 𝜆 orientation
can be obtained in ෨𝑂 log 𝑛 MPC rounds with
𝑂 𝑛𝛿 memory per machine and the total
memory of ෨𝑂 𝜆𝑛 .

n = number of vertices

n = number of verticesOur results

Theorem 1
1 + 𝜖 -approximate k-core decomposition can

be obtained in 𝑂 log log 𝑛 MPC rounds with
෨𝑂(𝑛) memory per machine.

Theorem 3

1 + 𝜖 -approximate densest subgraph can be
obtained in ෨𝑂 log𝑛 MPC rounds with 𝑂 𝑛𝛿

memory per machine and the total memory of
෨𝑂 max 𝑛1+𝛿,𝑚 .

Theorem 2

2 + 𝜖 -approximate k-core decomposition can
be obtained in ෨𝑂 log 𝑛 MPC rounds with
𝑂 𝑛𝛿 memory per machine and the total
memory of ෨𝑂 max 𝑛1+𝛿 ,𝑚 .

Theorem 4

For a graph of arboricity 𝜆, a 2 + 𝜖 𝜆 orientation
can be obtained in ෨𝑂 log 𝑛 MPC rounds with
𝑂 𝑛𝛿 memory per machine and the total
memory of ෨𝑂 𝜆𝑛 .

Poster: Wed, Pacific Ballroom #166

Theorem 1
(1 + 𝜖)-approximate k-core decomposition can
be obtained in 𝑂 log log 𝑛 MPC rounds with
෨𝑂 𝑛 memory per machine.

Next

Theorem 1
(1 + 𝜖)-approximate k-core decomposition can
be obtained in 𝑂 log log 𝑛 MPC rounds with
෨𝑂 𝑛 memory per machine.

Next

High-level idea:
Simulate the sequential algorithm.

The sequential algorithm

- Given a threshold k, repeatedly
remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

The sequential algorithm

k=2
- Given a threshold k, repeatedly

remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

The sequential algorithm

k=2
- Given a threshold k, repeatedly

remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

The sequential algorithm

k=2
- Given a threshold k, repeatedly

remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

The sequential algorithm

k=2
- Given a threshold k, repeatedly

remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

The sequential algorithm

- Given a threshold k, repeatedly
remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

k=2

Coreness value of all remaining vertices >= 2.

The sequential algorithm

- Given a threshold k, repeatedly
remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

k=2

Coreness value of all remaining vertices >= 2.

Implementing this approach directly
can take too many rounds.

The sequential algorithm

- Given a threshold k, repeatedly
remove all the vertices of degree
less than k.

- The coreness value of a vertex is
the largest k for which it is not
removed.

k=2

Coreness value of all remaining vertices >= 2.

Implementing this approach directly
can take too many rounds.

Idea:
Process only large thresholds.

Partition vertices and process induced graphs

Partition vertices and process induced graphs

Partition vertices and process induced graphs

Apply the sequential algorithm locally.

Partition vertices and process induced graphs

Partition the graph across 𝑛
machines.

Apply the sequential algorithm locally.

Partition vertices and process induced graphs

Partition the graph across 𝑛
machines.

The local degree of each vertex
v with dv ≥ 𝑛 log 𝑛 is sharply
concentrated around its
expectation. (Chernoff bound)

Apply the sequential algorithm locally.

Partition vertices and process induced graphs

Partition the graph across 𝑛
machines.

The local degree of each vertex
v with dv ≥ 𝑛 log 𝑛 is sharply
concentrated around its
expectation. (Chernoff bound)

Run the sequential algorithm
locally to find (1 + 𝜖)-
approximate k-cores for 𝑘 ≥
𝑛 log 𝑛.

Apply the sequential algorithm locally.

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

The number of remaining
edges is ෨𝑂(𝑛 𝑛).

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

The number of remaining
edges is ෨𝑂(𝑛 𝑛).

Partition the vertices

across 𝑛
1

4 machines.

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

The number of remaining
edges is ෨𝑂(𝑛 𝑛).

Partition the vertices

across 𝑛
1

4 machines.

Detect k-cores for k ≥

𝑛
1

4 log 𝑛.

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

The number of remaining
edges is ෨𝑂(𝑛 𝑛).

Partition the vertices

across 𝑛
1

4 machines.

Detect k-cores for k ≥

𝑛
1

4 log 𝑛.

Repeat.

Detecting all approximate k-cores

Partitioning across 𝑛
machines detects the k-cores
for 𝑘 ≥ 𝑛 log 𝑛. How about
𝑘 < 𝑛 log 𝑛?

Ignore all the edges
between vertices of
coreness ≥ 𝑛 log 𝑛.

The number of remaining
edges is ෨𝑂(𝑛 𝑛).

Partition the vertices

across 𝑛
1

4 machines.

Detect k-cores for k ≥

𝑛
1

4 log 𝑛.

Repeat.

n → n1/2 → n1/4 → … → n1/log n

log log n rounds

Experiments

SKC = the algorithm in [Esfandiari et al. 2018]
VKC = Theorem 1

Experiments

SKC = the algorithm in [Esfandiari et al. 2018]
VKC = Theorem 2

Theorem 2

(2 + 𝜖)-approximate k-core decomposition can
be obtained in ෨𝑂 log 𝑛 MPC rounds with
𝑂 𝑛𝛿 memory per machine and the total
memory of ෨𝑂 max 𝑛1+𝛿 ,𝑚 .

Next

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1 1-coreness

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

- Given a threshold k, repeatedly
remove all the vertices of degree
less than (2 + 𝜖)k.

- The approximate coreness value
of a vertex is the largest k for
which it is not removed.

k=1

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

1-coreness

𝟐 + 𝝐 -approximate 1-coreness

(2 + 𝜖)-approximate algorithm in log 𝑛 iterations

The algorithm terminates
in 𝑂 log 𝑛 iterations!

High-level idea:
Simulate 𝑂 log 𝑛 sequential

in ෨𝑂 log 𝑛 MPC iterations.

𝟐 + 𝝐 -approximate 1-coreness

Simulation of the log 𝑛-iteration algorithm

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulation of the log 𝑛-iteration algorithm

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.

Simulation of the log 𝑛-iteration algorithm

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.

Simulation of the log 𝑛-iteration algorithm

v

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.

Simulation of the log 𝑛-iteration algorithm

v

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.
2-hop

Simulation of the log 𝑛-iteration algorithm

v

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.
2-hop

A log𝑛-hop neighborhood

might be too big! E.g., a
vertex has degree n.

Simulation of the log 𝑛-iteration algorithm

v

Split the log 𝑛 iterations into

log 𝑛 phase, each phase

consisting of log 𝑛 iterations.

Simulate each phase for
each vertex by gathering its

log 𝑛-hop neighborhood.
2-hop

A log𝑛-hop neighborhood

might be too big! E.g., a
vertex has degree n.

Idea:
Sparsify the graph.

Sparsification

Given a parameter k, sparsify
the graph by keeping each

edge with probability Θ
log 𝑛

𝑘
.

Sparsification

Given a parameter k, sparsify
the graph by keeping each

edge with probability Θ
log 𝑛

𝑘
.

The approximate k-core is
preserved after the
sparsification. (Chernoff bound)

Sparsification

Given a parameter k, sparsify
the graph by keeping each

edge with probability Θ
log 𝑛

𝑘
.

Some vertices still might
have too large degree. E.g.,
vertex of degree n for k=n0.1.

The approximate k-core is
preserved after the
sparsification. (Chernoff bound)

Sparsification

Given a parameter k, sparsify
the graph by keeping each

edge with probability Θ
log 𝑛

𝑘
.

Some vertices still might
have too large degree. E.g.,
vertex of degree n for k=n0.1.

“Freeze” all the vertices of

degree more than 2 𝛿 log 𝑛

after the sparsification.

The approximate k-core is
preserved after the
sparsification. (Chernoff bound)

Sparsification

Given a parameter k, sparsify
the graph by keeping each

edge with probability Θ
log 𝑛

𝑘
.

Some vertices still might
have too large degree. E.g.,
vertex of degree n for k=n0.1.

“Freeze” all the vertices of

degree more than 2 𝛿 log 𝑛

after the sparsification.

The number of frozen vertices
is small and affects the round
complexity only by a constant.

The approximate k-core is
preserved after the
sparsification. (Chernoff bound)

Densest subgraph vs. k-core decomposition

Is the non-empty k-core for the largest
k the same as the densest subgraph ?

Densest subgraph vs. k-core decomposition

Is the non-empty k-core for the largest
k the same as the densest subgraph ?

Densest subgraph vs. k-core decomposition

Is the non-empty k-core for the largest
k the same as the densest subgraph ?

2-core3-core

Densest subgraph vs. k-core decomposition

Is the non-empty k-core for the largest
k the same as the densest subgraph ?

2-core3-core

density = 11/7density = 3/2

