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Impurity	Measures	
•  Maps	a	vector	v	in	Rd	into	a	non-negative	value	
•  The	more	homogeneous	v	with	respect	to	its	
components	the	larger	the	impurity	
–  (1,0,0,19):		small	impurity	
–  (5,5,5,5)		:		large	impurity	
	

•  Well	known	impurity	measures		
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Abstract
We study the problem of optimizing the cluster-
ing of a set of vectors when the quality of the
clustering is measured by the Entropy or the Gini
impurity measure. Our results contribute to the
state of the art both in terms of best known approx-
imation guarantees and inapproximability bounds:
(i) we give the first polynomial time algorithm
for Entropy impurity based clustering with ap-
proximation guarantee independent of the number
of vectors and (ii) we show that the problem of
clustering based on entropy impurity does not
admit a PTAS. This also implies an inapproxima-
bility result in information theoretic clustering for
probability distributions closing a problem left
open in [Chaudhury and McGregor, COLT08]
and [Ackermann et al., ECCC11]. We also re-
port experiments with a new clustering method
that was designed on top of the theoretical tools
leading to the above results. These experiments
suggest a practical applicability for our method,
in particular, when the number of clusters is large.

1. Introduction
Data clustering is a fundamental tool in machine learn-
ing that is commonly used to reduce the computational
resources required to analyse large datasets. For comprehen-
sive descriptions of different clustering methods and their
applications refer to (Hennig et al., 2015; Jain et al., 1999).
In general, clustering is the problem of partitioning a set
of items so that, in the output partition, similar items are
grouped together and dissimilar items are separated. When
the items are represented as vectors that correspond to fre-
quency counts or probability distributions many clustering
algorithms rely on so called impurity measures (e.g., en-
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tropy) that estimate the dissimilarity of a group of items
(see, e.g., (Dhillon et al., 2003) and references therein) In
a simple example of this setting a company may want to
group users according to their taste for different genres of
movies. Each user u is represented by a vector, where the
value of the ith component counts the number of times u
watched movies from genre i. To evaluate the dissimilarity
of a group of users we calculate the impurity of the sum of
their associated vectors and then we select the partition for
which the sum of the dissimilarities of its groups is mini-
mum. The design of clustering methods based on impurity
measures is the central theme of this paper.

Problem Description. An impurity measure I : v 2 Rg 7!
I(v) 2 R+ is a function that assigns to a vector v a non-
negative value I(v) so that the more homogeneous v, with
respect to the values of its coordinates, the larger its impurity.
Well-known examples of impurity measures are the Entropy
impurity (aka Information Gain in the context of random
forests) and the Gini impurity (Breiman et al., 1984):
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We are given a collection of n many g-dimensional vectors
V with non-negative values and we are also given an impu-
rity measure I . The goal is to find a partition P of V into k

disjoint groups of vectors V1, . . . , Vk so as to minimize the
sum of the impurities of the groups in P , i.e.,

I(P) =
kX
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We refer to this problem as the PARTITION WITH MINIMUM
WEIGHTED IMPURITY PROBLEM (PMWIP). While we
present results for IGini our main focus is on the Entropy
impurity IEnt. We use PMWIPEnt (PMWIPGini) to refer
to PMWIP with impurity measure IEnt (IGini).

Motivations. Clustering based on impurity measures is
used in a number of relevant application as: (i) partition
the values of attributes during the branching phase in the
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Clustering	with	minimum	impurity	
Input	
•  V	:		set	of	non-negative	vectors	in	Rd			
•  I	:	impurity	measure	
•  k	:	number	of	clusters	
Goal		

Partition	V	into	k	groups	        	so	that		
	 	 		

	
is	minimized	

																:	impurity	of	the	sum	of	the	vectors	in 
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where k is arbitrary.

PMWIPEnt has recently attracted large interest in the infor-
mation theory community in the context of efficient quan-
tizer design, and also motivated by the construction of polar
codes (Tal & Vardy, 2013; Kurkoski & Yagi, 2014; Kar-
towsky & Tal, 2017; Pereg & Tal, 2017; Nazer et al., 2017)
In our terminology, the focus of this series of work is prov-
ing bounds on the increase of impurity when we reduce the
number of clusters from n to k.

PMWIPEnt is a generalization of MTCKL (Chaudhuri
& McGregor, 2008), the problem of clustering a set of n
probability distributions into k groups minimizing the total
Kullback-Leibler (KL) divergence from the distributions to
the centroids of their assigned groups. MTCKL corresponds
to the particular case of PMWIPEnt where each vector
in V has the same `1 norm. While the optimal solutions
of PMWIPEnt and MTCKL match, the problems differ
in terms of approximation since the objective function for
MTCKL has an additional constant term �

P
v2V

IEnt(v)
so that an ↵-approximation for MTCKL problem implies
an ↵-approximation for PMWIPEnt while the converse is
not necessarily true.

In (Chaudhuri & McGregor, 2008) an O(log n) approxima-
tion for MTCKL is given. Some (1 + ✏)-approximation
algorithms were proposed for a constrained version of
MTCKL where every element of every probability distri-
bution lies in the interval [�, v] (Ackermann et al., 2008;
Ackermann & Blömer, 2009; Ackermann et al., 2010; Lu-
cic et al., 2016). The algorithm from (Ackermann et al.,
2008; 2010) runs in O(n2O(mk/✏ log(mk/✏))) time, where m
is a constant that depends on ✏ and �. In (Ackermann &
Blömer, 2009) the running time is improved to O(ngk +
g2O(k/✏ log(k/✏)) logk+2(n)) via the use of weak coresets.
Recently, using strong coresets, O(ngk + 2poly(gk/✏) time
is obtained (Lucic et al., 2016). We shall note that these
algorithms provide guarantees for µ-similar Bregman diver-
gences, a class of metrics that includes domain constrained
KL divergence. By using similar assumptions on the com-
ponents of the input probability distributions, Jegelka et. al.
(Jegelka et al., 2008) show that Lloyds k-means algorithm—
which also has an exponential time worst case complex-
ity (Vattani, 2011)—obtains an O(log k) approximation for
MTCKL.

Among the algorithms mentioned for MTCKL, the one that
allows a more direct comparison with ours is the method
proposed in (Chaudhuri & McGregor, 2008) since it runs
in polytime and does not rely on assumptions over the in-
put data. As discussed before an ↵-approximation for the
MTCKL problem implies ↵-approximation for the special
case of PMWIPEnt with vectors of the same `1 norm, so
the approximation measure used in (Chaudhuri & McGre-
gor, 2008) is more challenging. However, our results apply

to a more general problem and nonetheless we are able to
provide approximation guarantee depending on the mini-
mum between the logarithm of the number of clusters and
the dimension while the guarantee in (Chaudhuri & McGre-
gor, 2008) depends on the logarithm of the number of input
vectors.

In terms of computational complexity, Chaudhuri and Mc-
Gregor (Chaudhuri & McGregor, 2008) proved that a variant
of MTCKL where the centroids must be chosen from the
vectors in V is NP-Complete. Ackermann et. al. (Acker-
mann et al., 2011) proved that MTCKL is NP-Hard. Our
hardness result for PMWIPEnt implies that clustering with
KL-Divergence if APX-Hard, improving the previous re-
sults.

Experimental work on clustering using impurity measures
have been performed by a number of authors (Baker & Mc-
Callum, 1998; Coppersmith et al., 1999; Slonim & Tishby,
1999; Dhillon et al., 2003; Li et al., 2004; Lucic et al., 2016).
A variant of Loyds k-means that uses Kullback-Leibler di-
vergence rather than squared Euclidean distance was pro-
posed independently in (Chou, 1991; Dhillon et al., 2003).
Experiments from (Dhillon et al., 2003) suggest that this
method, denoted by them as DIVISIVE CLUSTERING, is
superior to those proposed in (Baker & McCallum, 1998;
Slonim & Tishby, 1999). That is the reason why we decided
to compare our method with this specific one.

2. Preliminaries
We start defining some notations employed throughout the
paper. An instance of PMWIP is a triple (V, I, k), where V
is a collection of non-null vectors in Rg with non-negative
integer coordinates, k is an integer larger than 1 and I is a
impurity measure.

We assume that for each component i = 1, . . . , g there
exists at least one vector v 2 V whose ith coordinate is non-
zero, i.e., the vector

P
v2V

v has no zero coordinates—for
otherwise we could consider an instance of PMWIP with
the vectors lying in some dimension g

0
< g. For a set of

vectors S, the impurity I(S) of S is given by I(
P

v2S
v).

The impurity of a partition P = (V (1)
, . . . , V

(k)) of the set
V is then I(P) =

P
k

i=1 I(V
(i)). We use opt(V, I, k) to

denote the minimum possible impurity for a k-partition of
V and, whenever the context is clear, we simply talk about
instance V (instead of (V, I, k)) and of the impurity of an
optimal solution as opt(V ) (instead of opt(V, I, k)). We
say that a partition (V (1)

, . . . , V
(k)) is optimal for input

(V, I, k) iff
P

k

i=1 I(V
(i)) = opt(V, I, k).

For an algorithm A and an instance (V, I, k), we denote by
A(V, I, k) and I(A(V, I, k)) the partition output by A on
instance (V, I, k) and its impurity, respectively. Whenever
it is clear from the context, we omit to specify the instance
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i=1 I(V
(i)). We use opt(V, I, k) to

denote the minimum possible impurity for a k-partition of
V and, whenever the context is clear, we simply talk about
instance V (instead of (V, I, k)) and of the impurity of an
optimal solution as opt(V ) (instead of opt(V, I, k)). We
say that a partition (V (1)

, . . . , V
(k)) is optimal for input

(V, I, k) iff
P

k

i=1 I(V
(i)) = opt(V, I, k).

For an algorithm A and an instance (V, I, k), we denote by
A(V, I, k) and I(A(V, I, k)) the partition output by A on
instance (V, I, k) and its impurity, respectively. Whenever
it is clear from the context, we omit to specify the instance
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Abstract

We study the problem of optimizing the clustering of a set of vectors when
the quality of the clustering is measured by the Entropy impurity measure. This
is typical of situations where items to be clustered are represented by vectors
of frequency counts or probability distributions. Our results contribute to the
state of the art both in terms of best known approximation guarantees and in-
approximability bounds.

Problem Definition

An impurity measure I : v 2 Rd 7! I(v) 2 R+ is a function that
assigns a vector v to a non-negative value I(v) so that the more homo-
geneous v, with respect to the values of its coordinates, the larger its
impurity. A well-known example of impurity measure is the Entropy
impurity (aka Information Gain in the context of random forests):

IEnt(v) = kvk1
dX

i=1

vi

kvk1
log
kvk1
vi

.

Given a collection of n many d-dimensional vectors V with non-
negative values and an integer k > 1, the goal is to find a partition
P of V into k disjoint groups of vectors V1, . . . , Vk so as to minimize
the sum of their impurities, i.e.,

IEnt(P) =
kX

m=1

IEnt

✓ X

v2Vm

v

◆
. (1)

We refer to this problem as the PARTITION WITH MINIMUM
WEIGHTED IMPURITY PROBLEM (PMWIPEnt).

Why Study this Problem?

The problem arises in many applications:
• Clustering of datasets with nominal attributes. Since there is no

natural distance between the values of the attributes, impurity mea-
sures are widely used instead of geometrically defined distances.

• Clustering of probability distributions. Typically Kullback-
Leibler divergence is used as a measure of distance [9]. The re-
sulting optimization criterion is closely related (and in some cases
equivalent) to minimizing the Entropy impurity.

• Quantization of discrete memoryless channels. In this case, the
goal is to build quantizations that maximizes the mutual information
between channel input and quantizer’s output. This is also directly
expressible as an instance of PMWIPEnt [11, 15].

• Attribute selection for decision trees/random forests. The parti-
tion of the values of the attributes during the branching phase in the
construction of the decision tree is done by optimizing the change in
impurity due to the split [4, 8].

Our Contributions

• a simple linear time algorithm that guarantees
(i) O(log

P
v2V kvk1) approximation for PMWIPEnt;

(ii) O(log n+ log d) approximation for the case where all vectors in V

have the same `1 norm.
• a second algorithm providing O(log2(min{k, d}))-approximation for

PMWIPEnt in polynomial time. This is the first algorithm for clus-
tering based on entropy minimization, that guarantees approxima-
tion and does not depends on n.

• an inapproximability result showing that PMWIPEnt is APX-hard
even for the case where all vectors have the same `1-norm. This
result solves a problem that remained open in previous work [6, 2].

• some experimental evaluation of a new clustering method developed
on top of our theoretical tools/findings with the aim of assessing their
potential in practical applications.

Related Work

• Theoretical results on the structure of the optimal solution. The
PMWIPEnt can be solved in polynomial time when d = 2 [11].
This is based on a characterization of the optimal partition in terms
of hyperplanes in R

d [7, 5, 8], which provides an O(nd) optimal al-
gorithm for k = 2. For unbounded dimension d, the PMWIPEnt is
NP-hard even for k = 2. For k = 2, constant approximation algo-
rithms have been given for a class of impurity measures including
IEnt [13]. These algorithms do not extend to k > 2.

• Clustering probability distributions. PMWIPEnt is a general-
ization of MTCKL [6], the problem of clustering a set of n prob-
ability distributions into k groups minimizing the total Kullback-
Leibler (KL) divergence from the distributions to the centroids of
their assigned groups. MTCKL corresponds to the particular case
of PMWIPEnt where each vector in V has the same `1 norm. While
the optimal solutions of PMWIPEnt and MTCKL match, the prob-
lems differ in terms of approximation.
In [6] an O(log n) approximation for MTCKL is given. Some (1+✏)-
approximation algorithms, with exponential worst case time bound,
were proposed for a constrained version of MTCKL where every
element of every probability distribution lies in the interval [�, v]
[1, 3, 14]. By using similar assumptions on the components of the
input probability distributions, Jegelka et. al. [10] show that Lloyds
k-means algorithm—which also has an exponential time worst case
complexity—obtains an O(log k) approximation for MTCKL.

The Dominance Algorithm DOM

Our first algorithm makes use of a simple and fast approach based on
dimensionality reduction.

DOM(V, k)
1: If d < k create k � d new components for each vector, all of them

with 0’s
2: Reorder components of all vectors so that for u =

P
v2V v it

holds that ui � ui+1 for i = 1, . . . , d� 1
3: Let ei be the ith standard direction, i < k, and ek = 1�

P
k�1
i=1 ei

4: Project each v 2 V into Span({e1, · · · , ek})
5: Vi {v | largest component of proj(v) = i }
6: return the partition (V1, . . . , Vk)

We have the following result regarding algorithm DOM.
Theorem. DOM is a linear time O(log(

P
v2V kvk1))-approximation

algorithm for PMWIPEnt.
Remark. DOM also guarantees 3-approximation when the Gini impu-
rity measure is used instead of IEnt. This result is tight in the sense
that Gini minimization is APX-hard [12].

O(log2 min{d, k})- approx for PMWIPEnt

• The first step of the algorithm is to employ an extension of the ap-
proach introduced in [13] to reduce the dimension of the vectors in

V to k, if d > k. This step incurs an O(log k) additive loss in the
approximation ratio.

• The remaining steps are based on the following results:
(i) the existence of an optimal algorithm for d = 2 [11];

(ii) the existence of a mapping � : Rd 7! R2 such that for a set of vec-
tors B which is pure, i.e., a set of vectors with the same dominant
component, IEnt(

P
v2B v) = O(log d)IEnt(

P
v2B �(v));

(iii) a structural theorem that states that there exists a partition whose
impurity is at an O(log2 d) factor from the optimal one and such
that at most one of its groups is mixed, i.e., it is not pure.

A partition of this type with low impurity is constructed using Dy-
namic Programming over the vectors obtained via the mapping � –
this yields a pseudo-polynomial time complexity. To obtain a poly-
nomial time algorithm, a filtering technique similar to that used in
the FPTAS for the subset sum problem is employed.

Inapproximability results

We reduce the c-gap problem, associated with the minimum vertex
cover in a cubic graph G, to a c

0-gap problem on an instance R =
(V, IEnt, k) for PMWIPEnt where every vector has `1-norm 2:
(a) if G has a vertex cover of size k then R has a partition with impurity

at most k0 = (|E|� 2k)(6 + 3 log 3) + (3k � |E|)6
(b) if the size of a minimum vertex cover in G is � ck then every par-

tition of size k in R has impurity � c
0
k
0 for some constant c0 > 1

The correctness of item (a) relies on the following structural property
of cubic graphs:

Proposition. If a cubic graph G = (V,E) has a minimal vertex cover
with k vertices then it is possible to decompose G into k stars such that
each of them has either 2 or 3 edges.

The value of k0 above is exactly the impurity of the clustering induced
by this set of k stars.

The same arguments can also be used to show the inapproximabil-
ity of instances where all vectors have `1 norm equal to any constant
value, and in particular 1, i.e., the case where PMWIPEnt corresponds
to MTCKL. Then, we have

Theorem. The PMWIPEnt is APX-Hard even for the case where all
vector have the same `1 norm. Hence, MTCKL is APX-hard.

Experiments

Although the focus of our research is mainly theoretical, we also de-
signed RATIO-GREEDY, a fast and practical algorithm that relies on
our theoretical results.

RATIO-GREEDY(V, k)
1: if k  d then return DOM(V, k)
2: Divide V into d sets V1, . . . Vd, according to the largest component
3: Sort each Vi into a list Li of singleton clusters {v} sorted accord-

ing to ratio(v) = kvk1/(kvk1 � kvk1)
4: Reduce the number of clusters from n to k by applying the follow-

ing operations:
5: Pick a pair C,C 0 of adjacent clusters in some Li that minimizes

loss(C,C 0) = IEnt(C [ C
0)� IEnt(C)� IEnt(C

0)
6: Replace C,C

0 with C [ C
0

7: return the collection of resulting clusters in the d lists

Complexity and guarantee

• RATIO-GREEDY can be implemented to run in O(n log n+nd) time,
exploiting a binary heap to select the adjacent clusters in Li whose
merge incurs the minimum loss.

• The impurity of the partition obtained by RATIO-GREEDY is no
worse than that obtained by DOM due to the superadditivity of IEnt,
thus it inherits its approximation guarantees.

Baseline. We compared RATIO-GREEDY with DIVISIVE CLUSTER-
ING (DC for short), an adaptation of the k-means method proposed in
[9] to solve PMWIPEnt.

Datasets. We tested these methods on clustering 51.480 words from
the 20NEWS corpus and 170.946 words from RCV1 corpus, according
to their distributions w.r.t. 20 and 103 different classes respectively.

Result analysis. The figure below shows the impurities of the par-
titions obtained for different values of k for both datasets. DC-INIT,
DC-ITER1 and DC-ALL correspond, respectively, to different points
in the execution of DC: right after its initialization, after its first itera-
tion and at the end.

The key advantage of RATIO-GREEDY is its execution time. As an
example for RCV1, with k = 2000, it is 55 times faster than a single
iteration of DC. Moreover, after 5 iterations of DC, RATIO-GREEDY
still had a partition with lower impurity.
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Abstract

We study the problem of optimizing the clustering of a set of vectors when
the quality of the clustering is measured by the Entropy impurity measure. This
is typical of situations where items to be clustered are represented by vectors
of frequency counts or probability distributions. Our results contribute to the
state of the art both in terms of best known approximation guarantees and in-
approximability bounds.

Problem Definition

An impurity measure I : v 2 Rd 7! I(v) 2 R+ is a function that
assigns a vector v to a non-negative value I(v) so that the more homo-
geneous v, with respect to the values of its coordinates, the larger its
impurity. A well-known example of impurity measure is the Entropy
impurity (aka Information Gain in the context of random forests):

IEnt(v) = kvk1
dX

i=1

vi

kvk1
log
kvk1
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.

Given a collection of n many d-dimensional vectors V with non-
negative values and an integer k > 1, the goal is to find a partition
P of V into k disjoint groups of vectors V1, . . . , Vk so as to minimize
the sum of their impurities, i.e.,

IEnt(P) =
kX

m=1

IEnt

✓ X

v2Vm

v

◆
. (1)

We refer to this problem as the PARTITION WITH MINIMUM
WEIGHTED IMPURITY PROBLEM (PMWIPEnt).

Why Study this Problem?

The problem arises in many applications:
• Clustering of datasets with nominal attributes. Since there is no

natural distance between the values of the attributes, impurity mea-
sures are widely used instead of geometrically defined distances.

• Clustering of probability distributions. Typically Kullback-
Leibler divergence is used as a measure of distance [9]. The re-
sulting optimization criterion is closely related (and in some cases
equivalent) to minimizing the Entropy impurity.

• Quantization of discrete memoryless channels. In this case, the
goal is to build quantizations that maximizes the mutual information
between channel input and quantizer’s output. This is also directly
expressible as an instance of PMWIPEnt [11, 15].

• Attribute selection for decision trees/random forests. The parti-
tion of the values of the attributes during the branching phase in the
construction of the decision tree is done by optimizing the change in
impurity due to the split [4, 8].

Our Contributions

• a simple linear time algorithm that guarantees
(i) O(log

P
v2V kvk1) approximation for PMWIPEnt;

(ii) O(log n+ log d) approximation for the case where all vectors in V

have the same `1 norm.
• a second algorithm providing O(log2(min{k, d}))-approximation for

PMWIPEnt in polynomial time. This is the first algorithm for clus-
tering based on entropy minimization, that guarantees approxima-
tion and does not depends on n.

• an inapproximability result showing that PMWIPEnt is APX-hard
even for the case where all vectors have the same `1-norm. This
result solves a problem that remained open in previous work [6, 2].

• some experimental evaluation of a new clustering method developed
on top of our theoretical tools/findings with the aim of assessing their
potential in practical applications.

Related Work

• Theoretical results on the structure of the optimal solution. The
PMWIPEnt can be solved in polynomial time when d = 2 [11].
This is based on a characterization of the optimal partition in terms
of hyperplanes in R

d [7, 5, 8], which provides an O(nd) optimal al-
gorithm for k = 2. For unbounded dimension d, the PMWIPEnt is
NP-hard even for k = 2. For k = 2, constant approximation algo-
rithms have been given for a class of impurity measures including
IEnt [13]. These algorithms do not extend to k > 2.

• Clustering probability distributions. PMWIPEnt is a general-
ization of MTCKL [6], the problem of clustering a set of n prob-
ability distributions into k groups minimizing the total Kullback-
Leibler (KL) divergence from the distributions to the centroids of
their assigned groups. MTCKL corresponds to the particular case
of PMWIPEnt where each vector in V has the same `1 norm. While
the optimal solutions of PMWIPEnt and MTCKL match, the prob-
lems differ in terms of approximation.
In [6] an O(log n) approximation for MTCKL is given. Some (1+✏)-
approximation algorithms, with exponential worst case time bound,
were proposed for a constrained version of MTCKL where every
element of every probability distribution lies in the interval [�, v]
[1, 3, 14]. By using similar assumptions on the components of the
input probability distributions, Jegelka et. al. [10] show that Lloyds
k-means algorithm—which also has an exponential time worst case
complexity—obtains an O(log k) approximation for MTCKL.

The Dominance Algorithm DOM

Our first algorithm makes use of a simple and fast approach based on
dimensionality reduction.

DOM(V, k)
1: If d < k create k � d new components for each vector, all of them

with 0’s
2: Reorder components of all vectors so that for u =

P
v2V v it

holds that ui � ui+1 for i = 1, . . . , d� 1
3: Let ei be the ith standard direction, i < k, and ek = 1�

P
k�1
i=1 ei

4: Project each v 2 V into Span({e1, · · · , ek})
5: Vi {v | largest component of proj(v) = i }
6: return the partition (V1, . . . , Vk)

We have the following result regarding algorithm DOM.
Theorem. DOM is a linear time O(log(

P
v2V kvk1))-approximation

algorithm for PMWIPEnt.
Remark. DOM also guarantees 3-approximation when the Gini impu-
rity measure is used instead of IEnt. This result is tight in the sense
that Gini minimization is APX-hard [12].

O(log2 min{d, k})- approx for PMWIPEnt

• The first step of the algorithm is to employ an extension of the ap-
proach introduced in [13] to reduce the dimension of the vectors in

V to k, if d > k. This step incurs an O(log k) additive loss in the
approximation ratio.

• The remaining steps are based on the following results:
(i) the existence of an optimal algorithm for d = 2 [11];

(ii) the existence of a mapping � : Rd 7! R2 such that for a set of vec-
tors B which is pure, i.e., a set of vectors with the same dominant
component, IEnt(

P
v2B v) = O(log d)IEnt(

P
v2B �(v));

(iii) a structural theorem that states that there exists a partition whose
impurity is at an O(log2 d) factor from the optimal one and such
that at most one of its groups is mixed, i.e., it is not pure.

A partition of this type with low impurity is constructed using Dy-
namic Programming over the vectors obtained via the mapping � –
this yields a pseudo-polynomial time complexity. To obtain a poly-
nomial time algorithm, a filtering technique similar to that used in
the FPTAS for the subset sum problem is employed.

Inapproximability results

We reduce the c-gap problem, associated with the minimum vertex
cover in a cubic graph G, to a c

0-gap problem on an instance R =
(V, IEnt, k) for PMWIPEnt where every vector has `1-norm 2:
(a) if G has a vertex cover of size k then R has a partition with impurity

at most k0 = (|E|� 2k)(6 + 3 log 3) + (3k � |E|)6
(b) if the size of a minimum vertex cover in G is � ck then every par-

tition of size k in R has impurity � c
0
k
0 for some constant c0 > 1

The correctness of item (a) relies on the following structural property
of cubic graphs:

Proposition. If a cubic graph G = (V,E) has a minimal vertex cover
with k vertices then it is possible to decompose G into k stars such that
each of them has either 2 or 3 edges.

The value of k0 above is exactly the impurity of the clustering induced
by this set of k stars.

The same arguments can also be used to show the inapproximabil-
ity of instances where all vectors have `1 norm equal to any constant
value, and in particular 1, i.e., the case where PMWIPEnt corresponds
to MTCKL. Then, we have

Theorem. The PMWIPEnt is APX-Hard even for the case where all
vector have the same `1 norm. Hence, MTCKL is APX-hard.

Experiments

Although the focus of our research is mainly theoretical, we also de-
signed RATIO-GREEDY, a fast and practical algorithm that relies on
our theoretical results.

RATIO-GREEDY(V, k)
1: if k  d then return DOM(V, k)
2: Divide V into d sets V1, . . . Vd, according to the largest component
3: Sort each Vi into a list Li of singleton clusters {v} sorted accord-

ing to ratio(v) = kvk1/(kvk1 � kvk1)
4: Reduce the number of clusters from n to k by applying the follow-

ing operations:
5: Pick a pair C,C 0 of adjacent clusters in some Li that minimizes

loss(C,C 0) = IEnt(C [ C
0)� IEnt(C)� IEnt(C

0)
6: Replace C,C

0 with C [ C
0

7: return the collection of resulting clusters in the d lists

Complexity and guarantee

• RATIO-GREEDY can be implemented to run in O(n log n+nd) time,
exploiting a binary heap to select the adjacent clusters in Li whose
merge incurs the minimum loss.

• The impurity of the partition obtained by RATIO-GREEDY is no
worse than that obtained by DOM due to the superadditivity of IEnt,
thus it inherits its approximation guarantees.

Baseline. We compared RATIO-GREEDY with DIVISIVE CLUSTER-
ING (DC for short), an adaptation of the k-means method proposed in
[9] to solve PMWIPEnt.

Datasets. We tested these methods on clustering 51.480 words from
the 20NEWS corpus and 170.946 words from RCV1 corpus, according
to their distributions w.r.t. 20 and 103 different classes respectively.

Result analysis. The figure below shows the impurities of the par-
titions obtained for different values of k for both datasets. DC-INIT,
DC-ITER1 and DC-ALL correspond, respectively, to different points
in the execution of DC: right after its initialization, after its first itera-
tion and at the end.

The key advantage of RATIO-GREEDY is its execution time. As an
example for RCV1, with k = 2000, it is 55 times faster than a single
iteration of DC. Moreover, after 5 iterations of DC, RATIO-GREEDY
still had a partition with lower impurity.
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