Information Theoretic Clustering

Ferdiando Cicalese, U. Verona
Eduardo Laber, PUC-RIO
Lucas Murtinho, PUC-RIO

POSTER 165, Pacific Ballroom



Impurity Measures

* Maps a vector v in R% into a non-negative value

* The more homogeneous v with respect to its
components the larger the impurity

—(1,0,0,19): small impurity
—(5,5,5,5) : large impurity

 Well known impurity measures
Ienv) = VI Y- 7210 VL Entropy
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Clustering with minimum impurity

Input

* V: set of non-negative vectors in R®
* [:impurity measure

* k :number of clusters

Goal

Partition V into k groups P = (V(1)7 SR V(k)) so that
I(P) = i I(V)

is minimized

I(V(i)) - impurity of the sum of the vectors in V(%)



Applications/ Motivations

Generalizes clustering using KL-divergence

— Entropy impurity and KL-divergence of a clustering
differ by a constant factor

Clustering probability distributions

Clustering nominal attributes in decision tree/
random forest construction

Channel Quantizer Design [Inf. Theory]



Our Contributions

Approximation Algorithms

e 3-approximation for Gini in
linear time (arbitrary k)

* O(log? (min{d,k}))-
approximation for Entropy in
polytime

— First algorithm with
approximation independent of

n that does make assumption
on the input domain
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Our Contributions

Approximation Algorithms Project vectors in dimension k

incur small additive loss
e 3-approximation for Gini in
linear time (arbitrary k)
Each cluster is pure: all vectors
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Our Contributions

Approximation Algorithms Project vectors in dimension k

incur small additive loss
e 3-approximation for Gini in
linear time (arbitrary k)
Each cluster is pure: all vectors

O(log? (min{d,k}))- have the same largest component

approximation for Entropy in
polytime

There is a clustering with exactly one non-pure cluster and impurity
O(log? d)-OPT
Find this clustering in a 2-dim projection using DP



Our Contributions

APX-Hardness for
Entropy

* Reduction from c-gap
vertex cover in cubic
graphs

* Solves open question
from [Chaudhuri and

McGregor, COLTO8] and
[Ackermann et al.,

ECCC11]



Our Contributions

APX-Hardness for 0..010..010...00

Ent ro py Edges to vectors with two 1’s
0..000...010...01

* Reduction from c-gap Theorem

vertex cover in cubic K(Gk) =3log3|E|+6(1-log3)k
gra phS * MinVertexCover < k = Opt-Impurity < k’(G,k)
MinVertexCover > ck = Opt-Impurity > c’k’(G, k)

* Solves open question
from [Chaudhuri and

McGregor, COLTO8] and
[Ackermann et al.,

ECCC11]



Our Contributions

APX-Hardness for > 0..010..010...00

Ent ro py Edges to vectors with two 1’s
* 0..000...010...01

* Reduction from c-gap Theorem

vertex cover in cubic K(Gk) =3log3|E|+6(1-log3)k
gra phS * MinVertexCover < k = Opt-Impurity < k’(G,k)
* MinVertexCover > ck = Opt-Impurity > c’k’(G,k)

* Solves open question

[Ackermann et al., 'y
ECCC11]

Lemma. G cubic and min-VertexCover <= k
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Ratio-Greedy Algorithm

* Built on top of the theoretical
ideas

* Promising preliminary
experimental comparisons

— much faster than a k-means
based method

— close impurity
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Ratio-Greedy Algorithm
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— much faster than a k-means
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— close impurity

DC-INiT | DC-ITERL | DC-ITERS

50
100
200
500
1000
2000

0.4 3 11

0.4 6 253
0.5 10.8 49.1
0.5 203 96.7
0.5 88 238.7
0.5 96.6 477.2
0.5 191.3 958 19320.2




Our Contributions

Ratio-Greedy Algorithm
Built on top of the theoretical =

ideas

Promising preliminary
experimental comparisons

— much faster than a k-means  y

based method
— close impurity
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Abstract
We study the problem of optimizing the clustering of a set of vectors when
the quality of the clustering is measured by the Entropy impurity measure. This
is typical of situations where items to be clustered are represented by vectors
of frequency counts or probability distributions. Our results contribute to the
state of the art both in terms of best known approximation guarantees and in-
approximability bounds.

Problem Definition

An impurity measure 7 : v € R? s I(v) € R is a function that
assigns a vector v to a non-negative value /(v) so that the more homo-
geneous v, with respect to the values of its coordinates, the larger its
impurity. A well-known example of impurity measure is the Entropy
impurity (aka Information Gain in the context of random forests):

vl vi

d

g [vil1

L) = v 3= 2 1o 1V
=1

Given a collection of 7 many d-dimensional tors V' with non-

sulting optimization criterion is closely related (and in some cases
equivalent) to minimizing the Entropy impurity.

e Quantization of discrete memoryless channels. In this case, the
goal is to build quantizations that maximizes the mutual information
between channel input and quantizer’s output. This is also directly
expressible as an instance of PMWIP g, [11, 15].

Attribute selection for decision trees/random forests. The parti-
tion of the values of the attributes during the branching phase in the
construction of the decision tree is done by optimizing the change in
impurity due to the split [4, 8].

Our Contributions

© a simple linear time algorithm that guarantees

(i) O(log >yey ||v][1) approximation for PMWIP g,,;:

(ii) O(log n + log d) approximation for the case where all vectors in V'

have the same ¢, norm.

 a second algorithm providing O(log2(min{k, d}))-approximation for
PMWIP z,,, in polynomial time. This is the first algorithm for clus-
tering based on entropy minimization, that guarantees approxima-
tion and does not depends on 7.

"Departamento de Informatica, PUC-RIO

o an inapproximability result showing that PMWIPz,,; is APX-hard
even for the case where all vectors have the same £;-norm. This
result solves a problem that remained open in previous work [6, 2].

« some experimental evaluation of a new clustering method developed
on top of our theoretical tools/findings with the aim of as ing their
potential in practical applications.

Related Work

© Theoretical results on the structure of the optimal solution. The
PMWIP,,, can be solved in polynomial time when d = 2 [11].
This is based on a characterization of the optimal partition in terms
of hyperplanes in R [7, 5, 8], which provides an O(n) optimal al-
gorithm for & = 2. For unbounded dimension d, the PMWIPf;,,, is
NP-hard even for k = 2. For k& = 2, constant approximation algo-
rithms have been given for a class of impurity measures including
I [13]. These algorithms do not extend to k > 2

o Clustering probability distributions. PMWIP;,, is a general-
ization of MTC ¢/, [6], the problem of clustering a set of 7 prob-
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V 1o k, if d > k. This step incurs an O(log
approximation ratio.

) additive loss in the

o The remaining steps are based on the following result

(i) the existence of an optimal algorithm for d = 2 [11];

(ii) the existence of a mapping y : RY — R such that for a set of vec-
tors B which is pure, i.e., a set of vectors with the same dominant
component, I5,(>"yepv) = O(logd) I 5 (3 yep X(V)):

(iii) a structural theorem that states that there exists a partition whose
impurity is at an O(log? d) factor from the optimal one and such
that at most one of its groups is mixed, it is not pure.

A partition of this type with low impurity is constructed using Dy-
namic Programming over the vectors obtained via the mapping x
this yields a pseudo-polynomial time complexity. To obtain a poly-
nomial time algorithm, a filtering technique similar to that used in
the FPTAS for the subset sum problem is employed.

Inapproximability results

See you tonight!

Pacific Ballroom

dimensionality reduction.

Dom(V, k)

If d < k create k — d new components for each vector, all of them
with 0’s

Reorder components of all vectors so that for u = >, v it
holds that u; > w4 fori =1,....d— 1

3: Let e, be the ith standard direction, i < k, and e, = 1 — >~
a: Project each v € V into Span({ey,--- ,e;})

5. V; «— {v | largest component of proj(v) =i }

6 return the partition (Vi,..., V)

We have the following result regarding algorithm DoMm.
Theorem. DOM is a linear time O(log(3 ey || V]I1))-approximation
algorithm for PMWIP ...
Remark. DOM also guarantees 3-approximation when the Gini impu-
rity measure is used instead of Ip,,;. This result is tight in the sense
that Gini minimization is APX-hard [12].

min{d, k})- approx for PMWIP,,

o The first step of the algorithm is to employ an extension of the ap-
proach introduced in [13] to reduce the dimension of the vectors in

o MTC /. Then, we have

Theorem. The PMWIP 5, is APX-Hard even for the case where all
vector have the same (1 norm. Hence, MTC i 1. is APX-hard.

Experiments

Although the focus of our research
signed RATIO-GREEDY, a fast and pi
our theoretical results.
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RATIO-GREEDY(V, k)
i d then return DoMm(V, k)
2 Divide V into d sets Vi, . . . V, according to the largest component

Sort each Vj into a list [
ing to ratio(v) = ||v||y,

; of singleton clusters
(vl = lIvilso)

} sorted accord-

4 Reduce the number of clusters from 7 to & by applying the follow-
ing operations:
5. Pick a pair C', C" of adjacent clusters in some L; that minimizes
1085(C, C") = Iy (C' U C) = Ipp(C) — Ty (C)
6 Replace ', C’ with C'U "
7: return the collection of resulting clusters in the d lis

ICML | 2019

Thirty-sixth International
Conference on Machine Learning

Complexity and guarantee

o RATIO-GREEDY can be implemented to run in O(n log n+nd) time,
exploiting a binary heap to select the adjacent clusters in L; whose
merge incurs the minimum loss

e The impurity of the partition obtained by RATIO-GREEDY is no
worse than that obtained by DOM due to the superadditivity of /z,,;,
thus it inherits its approximation guarantees.

Baseline. We compared RATIO-GREEDY with DIVISIVE CLUSTER-
ING (DC for short), an adaptation of the k-means method proposed in
[9] to solve PMWIP 1,,.

Datasets. We tested these methods on clustering 51.480 words from
the 20NEWS corpus and 170.946 words from RCV 1 corpus, according
to their distributions w.r.t. 20 and 103 different classes respectively.

Result analysis. The figure below shows the impurities of the par-
titions obtained for different values of £ for both datasets. DC-INIT,

C-ITER1 and DC-ALL correspond, respectively, to different points
in the execution of DC: right after its initialization, after its first it
the end
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